Experimental designs for radiation dosimetry calibration

Jesús López-Fidalgo fidalgo@unav.es joint work with Mariano Amo-Salas

Universidad de Navarra

Outline

1. Motivation.

э

- 1. Motivation.
- 2. Optimal experimental design.

- 1. Motivation.
- 2. Optimal experimental design.
- 3. Inverse function theorem.

- 1. Motivation.
- 2. Optimal experimental design.

Designs for calibration

- 3. Inverse function theorem.
- 4. Optimal designs.

- 1. Motivation.
- 2. Optimal experimental design.
- 3. Inverse function theorem.
- 4. Optimal designs.
- 5. Optimal dose-calibration designs.

Motivation

э

Calibration model in dosimetry. Ramos-García L.I. and Pérez-Azorín J.F. (2013). Improving the calibration of radiochromic films. *Medical Physics*, 40(7).

$$\eta^{-1}(D, heta) = \mu(\mathit{netOD}, heta) = lpha \ \mathit{netOD} + eta \ \mathit{netOD}^\gamma,$$

$$\eta^{-1}(D, \theta) = \mu(\operatorname{net}OD, \theta) = \alpha \operatorname{net}OD + \beta \operatorname{net}OD^{\gamma},$$

 $D \in [0, B]$ Dose,

$$\begin{split} \eta^{-1}(D, heta) &= \mu(\mathit{netOD}, heta) = \alpha \ \mathit{netOD} + \beta \ \mathit{netOD}^{\gamma}, \ D \in [0,B] & \mathsf{Dose}, \ \mathit{netOD} & \mathsf{Observed value} \end{split}$$

$$\begin{array}{rcl} \eta^{-1}(D,\theta) &=& \mu(\textit{netOD},\theta) = \alpha \; \textit{netOD} + \beta \; \textit{netOD}^{\gamma}, \\ D \in [0,B] & \text{Dose,} \\ \textit{netOD} & \text{Observed value} \\ \theta &=& (\alpha, \; \beta, \; \gamma)^T \; \text{to be estimated using the OLS.} \end{array}$$

Optimal experimental design (OED)

Designs for calibration

Ordinary OED

Ordinary OED

$$y = \eta(x, \theta) + \varepsilon, \quad \varepsilon \equiv N(0, \sigma = 1), \quad x \varepsilon \chi$$

$$y = \eta(x, \theta) + \varepsilon, \quad \varepsilon \equiv N(0, \sigma = 1), \quad x \varepsilon \chi$$

Approximate design: Probability measure on the design space,

$$\xi = \begin{cases} x_1 & x_2 & \dots & x_k \\ p_1 & p_2 & \dots & p_k \end{cases}$$

$$y = \eta(x, \theta) + \varepsilon, \quad \varepsilon \equiv N(0, \sigma = 1), \quad x \varepsilon \chi$$

Approximate design: Probability measure on the design space,

$$\xi = \begin{cases} x_1 & x_2 & \dots & x_k \\ p_1 & p_2 & \dots & p_k \end{cases},$$

Fisher Information Matrix (FIM) for the exponential family,

$$M(\xi, \theta) = \sum_{x \in \chi} I(x, \theta) \xi(x),$$

where
$$I(x,\theta) = \frac{\partial \eta(x,\theta)}{\partial \theta} \frac{\partial \eta(x,\theta)}{\partial \theta}^T$$
 is the FIM at x.

$$y = \eta(x, \theta) + \varepsilon, \quad \varepsilon \equiv N(0, \sigma = 1), \quad x \varepsilon \chi$$

Approximate design: Probability measure on the design space,

$$\xi = \begin{cases} x_1 & x_2 & \dots & x_k \\ p_1 & p_2 & \dots & p_k \end{cases},$$

Fisher Information Matrix (FIM) for the exponential family,

$$M(\xi,\theta) = \sum_{x \in \chi} I(x,\theta)\xi(x),$$

Optimality criterion.

Optimality criterion. Convex and non-increasing: A $\Phi-optimal$ design minimizes $\Phi.$

$$\operatorname{eff}_{\Phi}(\xi) = rac{\Phi[M(\xi^*, heta)]}{\Phi[M(\xi, heta)]}$$

$$\mathsf{eff}_{\Phi}(\xi) = rac{\Phi[M(\xi^*, heta)]}{\Phi[M(\xi, heta)]}.$$

D-optimality, $\Phi_D[M(\xi, \theta)] = \det M^{-1/m}(\xi, \theta).$

$$\mathsf{eff}_{\Phi}(\xi) = rac{\Phi[M(\xi^*, heta)]}{\Phi[M(\xi, heta)]}.$$

$$D-\text{optimality, } \Phi_D[M(\xi,\theta)] = \det M^{-1/m}(\xi,\theta).$$

$$c-\text{optimality, } \Phi_c[M(\xi,\theta)] = c^T M^-(\xi,\theta)c.$$

$$\operatorname{eff}_{\Phi}(\xi) = rac{\Phi[M(\xi^*, heta)]}{\Phi[M(\xi, heta)]}.$$

 $D-\text{optimality, } \Phi_D[M(\xi,\theta)] = \det M^{-1/m}(\xi,\theta).$ $c-\text{optimality, } \Phi_c[M(\xi,\theta)] = c^T M^-(\xi,\theta)c.$ $G-\text{optimality, } \Phi_G[M(\xi,\theta)] = \max_{x \in \chi} \frac{\partial \eta(x,\theta)}{\partial \theta^T} M^{-1}(\xi,\theta) \frac{\partial \eta(x,\theta)}{\partial \theta}.$

Designs for calibration

$$\operatorname{eff}_{\Phi}(\xi) = rac{\Phi[M(\xi^*, heta)]}{\Phi[M(\xi, heta)]}.$$

$$D-\text{optimality, } \Phi_D[M(\xi,\theta)] = \det M^{-1/m}(\xi,\theta).$$

$$c-\text{optimality, } \Phi_c[M(\xi,\theta)] = c^T M^-(\xi,\theta)c.$$

$$G-\text{optimality, } \Phi_G[M(\xi,\theta)] = \max_{x \in \chi} \frac{\partial \eta(x,\theta)}{\partial \theta^T} M^{-1}(\xi,\theta) \frac{\partial \eta(x,\theta)}{\partial \theta}.$$

$$V-\text{optimality, } \Phi_V[M(\xi,\theta)] = \int \frac{\partial \eta(x,\theta)}{\partial \theta^T} M^{-1}(\xi,\theta) \frac{\partial \eta(x,\theta)}{\partial \theta} dx.$$

Inverse function theorem

Inverse function theorem for computing FIM

 $\eta(x,\theta)$ unknown but $\mu(y,\theta) = \eta^{-1}(x,\theta)$ known.

 $\eta(x,\theta)$ unknown but $\mu(y,\theta) = \eta^{-1}(x,\theta)$ known. Differentiating

$$x = \mu(y, \theta) = \mu(\eta(x, \theta), \theta),$$

$$0 = \left(\frac{\partial \mu(y,\theta)}{\partial y}\right)_{y=\eta(x,\theta)} \frac{\partial \eta(x,\theta)}{\partial \theta} + \left(\frac{\partial \mu(y,\theta)}{\partial \theta}\right)_{y=\eta(x,\theta)}$$

 $\eta(x,\theta)$ unknown but $\mu(y,\theta) = \eta^{-1}(x,\theta)$ known. Differentiating

$$x = \mu(y, \theta) = \mu(\eta(x, \theta), \theta),$$

$$0 = \left(\frac{\partial \mu(y,\theta)}{\partial y}\right)_{y=\eta(x,\theta)} \frac{\partial \eta(x,\theta)}{\partial \theta} + \left(\frac{\partial \mu(y,\theta)}{\partial \theta}\right)_{y=\eta(x,\theta)}$$

$$\frac{\partial \eta(x,\theta)}{\partial \theta} = -\left(\frac{\partial \mu(y,\theta)}{\partial y}\right)_{y=\eta(x,\theta)}^{-1} \left(\frac{\partial \mu(y,\theta)}{\partial \theta}\right)_{y=\eta(x,\theta)}$$

Designs for calibration

D–, c– & sub–optimal designs

Designs for calibration

Computing the design on $netOD \in \chi_{netOD} = [0, 0.6]$ and transforming it, $D = 690 netOD + 1550 netOD^2 \in \chi = [0, 972]$,

$$\xi_D = \left\{ \begin{array}{rrr} 75.6 & 427.8 & 972 \\ 1/3 & 1/3 & 1/3 \end{array} \right\},$$

Computing the design on $netOD \in \chi_{netOD} = [0, 0.6]$ and transforming it, $D = 690 netOD + 1550 netOD^2 \in \chi = [0, 972]$,

$$\xi_D = \left\{ \begin{array}{ccc} 75.6 & 427.8 & 972 \\ 1/3 & 1/3 & 1/3 \end{array} \right\},$$

and the c-optimal,

$$\begin{split} \xi_{\gamma} = \left\{ \begin{array}{ccc} 46.25 & 439.36 & 972 \\ 0.476 & 0.359 & 0.165 \end{array} \right\}, \quad \xi_{\alpha} = \left\{ \begin{array}{ccc} 46.25 & 439.36 & 972 \\ 0.742 & 0.186 & 0.0717 \end{array} \right\}, \\ \xi_{\beta} = \left\{ \begin{array}{ccc} 170.7 & 972 \\ 0.622 & 0.378 \end{array} \right\}. \end{split}$$

Designs for calibration

Computing the design on $netOD \in \chi_{netOD} = [0, 0.6]$ and transforming it, $D = 690 netOD + 1550 netOD^2 \in \chi = [0, 972]$,

$$\xi_D = \left\{ \begin{array}{ccc} 75.6 & 427.8 & 972 \\ 1/3 & 1/3 & 1/3 \end{array} \right\},$$

and the c-optimal,

$$\xi_{\gamma} = \left\{ \begin{array}{cccc} 46.25 & 439.36 & 972 \\ 0.476 & 0.359 & 0.165 \end{array} \right\}, \quad \xi_{\alpha} = \left\{ \begin{array}{cccc} 46.25 & 439.36 & 972 \\ 0.742 & 0.186 & 0.0717 \end{array} \right\},$$

$$\xi_{\beta} = \left\{ \begin{array}{cccc} 170.7 & 972 \\ 0.622 & 0.378 \end{array} \right\}.$$

$$\hline \hline c_{\gamma} - \text{efficiency} & 0.567, & c_{\alpha} - \text{efficiency} & 0.424 \\ c_{\beta} - \text{efficiency} & 0.652 \end{array}$$

Suboptimal designs with more 10 points

Suboptimal designs with more 10 points

- Arithmetic sequences on *netOD* and *D*.
- Geometric sequences on *netOD* and *D*.
- Uniform sequences on *netOD* and *D*.

Suboptimal designs with more 10 points

- Arithmetic sequences on *netOD* and *D*.
- Geometric sequences on *netOD* and *D*.
- Uniform sequences on *netOD* and *D*.

	Design points									D–Eff
ξ^{A}_{netOD}	49.0	107.3	176.6	257.1	348.5	451.1	564.7	689.4	825.1	78.1 %
ξ_D^A	57.2	158.8	260.5	362.1	463.7	565.4	667.	768.7	870.3	75.5%
c										
ξ _{netOD}	55.6	73.3	97.2	130.2	176.3	241.4	334.9	471.	671.8	76.9%
ξD	55.6	73.3	97.2	130.2	176.3	241.4	334.9	471.	671.8	77.8%
-										
ξ ^E netOD	0	52.8	119.5	200	294.2	402.2	524	659.5	808.8	71.1%
ξD	0	108	216	324	432	540	648	756	864	64.9%
Last point omitted										

Dose-calibration designs

 For calibration models, the main goal is the precise prediction (calibration) of the explanatory variable.

- For calibration models, the main goal is the precise prediction (calibration) of the explanatory variable.
- "Inverse" of G- and V-optimality need to be adapted for "inverse" prediction.

- For calibration models, the main goal is the precise prediction (calibration) of the explanatory variable.
- "Inverse" of G- and V-optimality need to be adapted for "inverse" prediction.
- The Fedorov-Wynn algorithm is adapted for computing the optimal designs.

Criteria for calibration

Criteria for calibration

The variance of the prediction of D given a value of the target netOD is

$$Var(\hat{D}) = \left(\frac{\partial \mu(netOD, \theta)}{\partial \theta}\right)^T M^{-1}(\xi_D, \theta) \left(\frac{\partial \mu(netOD, \theta)}{\partial \theta}\right)$$

Criteria for calibration

The variance of the prediction of D given a value of the target netOD is

$$Var(\hat{D}) = \left(\frac{\partial \mu(\mathsf{net}OD, \theta)}{\partial \theta}\right)^T M^{-1}(\xi_D, \theta) \left(\frac{\partial \mu(\mathsf{net}OD, \theta)}{\partial \theta}\right)$$

Criteria for predictions,

BIOSTATNET

$$\begin{split} \Phi_{G_{l}}(\xi) &= \max_{netOD \in \chi_{netOD}} Var(\hat{D}) \\ \Phi_{V_{l}}(\xi) &= \frac{1}{\triangle_{netOD}} \int Var(\hat{D}) dZ, \end{split}$$

where χ_{netOD} contains possible targets and $\triangle_{netOD} = \text{length of } \chi_{netOD}.$ Optimized for netOD and transformed to the optimal design in D.

Designs for calibration

Algorithms for G_I – and V_I – optimality

 G_I -optimal design,

$$\xi_{G_I} = \left\{ \begin{array}{rrr} 123.6 & 541.5 & 972 \\ 0.11 & 0.34 & 0.55 \end{array} \right\}.$$

 V_I -optimal design,

$$\xi_{V_I} = \left\{ \begin{array}{ccc} 89.5 & 469.3 & 972 \\ 0.23 & 0.47 & 0.30 \end{array} \right\}.$$

- Biedermann, Bissantz, Dette, Jones (2011) Optimal designs for indirect regression. *Inverse Problems* 27(10), 1-21.
- Kitsos (1992). Quasi-Sequential Procedures for the Calibration Problem. *Metrika*, **59**, 235-244.
- Kitsos and Muller Ch.H. (1995). Robust linear calibration. Statistics 27(1-2), 93–106.
- López-Fidalgo, Rodríguez Díaz (2004). Elfving's method for m-dimensional models. *Metrika*, 59.
- Ramos-García, Pérez-Azorín (2013). Improving the calibration of radiochromic films. *Medical Physics*, 40(7).

