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Problem

To build and implement binary classification models

in oncology with better predictive ability

Work lines:

Construction of linear models that maximize the area
under ROC curve.

Selection of thresholds (from density functions) in order to
achieve practical rules for using the classifier.
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Binary classification problem

X1, . . . , Xn : predictive variables measured on a set of
patients.

Y denotes the status of each patient.

To predict Y (from X ′s)? (0, healthy, 1 diseased)

Definition

A classifier Y := f(X1, . . . , Xn) is a function of the predictive
variables and c is a threshold that separates patients (healthy -
diseased).

An individual i is classified as diseased if
Y := f(X1i, . . . , Xni) > c, where Xki denotes the value of the
k-th variable measured on the individual i.

Analogously, the individual is classified as healthy if
Y := f(X1i, . . . , Xni) < c
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Performance measures: sensibility and specificity

Definition

Let Ŷ (X) be the status assigned by the classifier to an
individual. Let c the cutpoint that separates the two states.

Sensibility ≡ TPR(c) = P{(Ŷ (X)) ≥ c|Y = 1}
Specificity ≡ TNR(c) = P{(Ŷ (X)) < c|Y = 0}

Definition

ROC(c) = {(1− Specificity(c), Sensibility(c)), c ∈ R}

If F0 and F1 denote the distribution functions of the
populations, healthy (0) and diseased (1), obtained from the
results of the classifier,

ROC = {(1− F0(c), 1− F1(c)), c ∈ R}

or equivalently: ROC(t) = {(t, 1− F1(F−1
0 (1− t))), t ∈ [0, 1]}
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ROC curve: Non-parametric approach
c ∈ (−∞,+∞), and {p1, . . . , pn1}, {p1, . . . , pn0

} numerical
values provided by the classifier for the classes 1 and 0,
respectively.

TPR(c) =

n1∑
i=1

I(pi > c)

n1
, FPR(c) =

n0∑
i=1

I(pi > c)

n0

n1 and n0 number of individuals of classes 1 and 0 respectively.
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Summary measure of ROC curve: area under the
ROC curve (AUC)

Definition

Given F0, F1 the distribution functions provided by the classifier
for the classes 0 and 1, the AUC is given by

AUC =

∫ 1

0
(1− F1(F−1

0 (1− t)))dt

Under Normality Y 0 ∼ N(µ0, σ0), Y 1 ∼ N(µ1, σ1):

ˆAUC = Φ

(
â√

1 + b̂2

)
, where â =

µ̂1 − µ̂0

σ̂1
, b̂ =

σ̂0

σ̂1

AUC: Non-parametric estimation
Let Y0, Y1 be the values provided by the classifier for classes 0 and 1:

ˆAUC =
1

n0n1

n0∑
i=1

n1∑
j=1

I(Y 1
j > Y 0

i ) , I(z > x) =

 1 si z > x
1/2 si z = x
0 si z < x
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Estimation of linear models under the criterion of
maximizing the AUC

Objective: Given (X1, . . . , Xn), estimate the parameters
(β2, . . . , βn) such that the linear model

L(Y) = Y1 + β2 · Y2 + . . .+ βn · Yn

maximizes the AUC.

Remark.- The above model and the more complex model:

Lg(Y) = g(β0 + β1 · Y1 + . . . βn · Yn),

with g any increasing monotone function, have the same AUC.

(Under multivariate Normality: Linear discriminant function

maximizes the AUC.)

Normality? =⇒ Non-parametric approach
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Some proposal

First of all, a set of possible values for each parameter βj is
selected.

The parameters βi are evaluated only inside the interval
[−1, 1], because the estimation of Xi + βXj with β > 1 or

β < −1 is equivalent to estimate
1

β
Xi +Xj with

1
β ∈ [−1, 1].

If k values are considered for each coefficient βi and the
predictive variables are n, the number of AUC’s to analize
is of order nkn−1 !!!!!

It is not a viable procedure even if the number of
variables is small.
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Our proposal: Step by step algorithm

Sketch of the algorithm

First of all, the best combination of two variables is
selected (AUC max).

Then, we estimate the coefficient β3 such that
(Xi + β2Xj) + β3Xk con k 6= i, j = 1, . . . , n has maximum
AUC.

The process is repeated till all variables are included.

This algorithm has a computational complexity obviously
smaller: k(n− 1)(3

2n− 1).
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Step by step algorithm

Technical questions

Normalizations, multiple optima

Exclusion of models with poor predictive ability:

H0 : AUCModel n variables ≤ AUCModel n−k variables

H1 : AUCModel n variables > AUCModel n−k variables

Correlations between variables.

Use of additive models. Number of terms in additive
models that maximize the AUC.
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Discussion

Discussion

Under normality (independent or not) the algorithm
converges to the maximum theoretical value.

In absence of normality, the algorithm performs better that
the logistic regression.

For a real database of prostate cancer the algorithm and
the logistic model shown a similar behaviour.

The algorithm has been used successfully in prediction of
breast cancer ( Nicolosi et al, JBSE 2013).
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Choosing a threshold point in binary classification
problems

Choosing a threshold

The practical application of the classification models
requires the selection of a threshold point c that defines a
satisfactory classification rule.

To determine whether a threshold point provides a good
classification, we can analyse the ROC curve.

The best...... high sensibility and specificity.
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Classical criteria for choosing a threshold

Definition

Let Y be a classifier: Y = f(X1, . . . , Xn). The Youden index is
the point c ∈ R that maximizes

TPR(c)− FPR(c) (Sensitivity + Specificity − 1)

Definition

Let Y be a classifier: Y = f(X1, . . . , Xn). The optimum point c
is the point that minimizes the quantity√

(1− TPR(c))2 + FPR(c)2(
(TPR(c), FPR(c)) is the closest point to (0,1)

)
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Our proposal

Estimation of density functions f0 and f1 (Smoothing
through kernel functions).

Selection of a threshold point to separate the two
populations.

Remark.- Smoothing of a function f from a data set
x1, . . . , xn:

f̂(x) =
1

nh

n∑
i=1

k

(
x− xi
h

)
where h is the bandwidth and k the kernel function.
Suggestions:

hn = 0.9 min{SD, IQR/1.35}n−1/5

k(t) =
15

16
(1− t2)2, with t ∈ (−1, 1)
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Different situations
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Examples
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Application in Prostate cancer. Real data

Prediction of Organ-confined disease.

Validation and comparison of the ability predictive and
clinical utility of our models with some of the “golden
rules” to predict organ-confined disease: Very good results.

Proposal of the most reliable threshold point to use the
estimated model (nomogram).

Prediction of biochemical recurrence after radical
prostatectomy.
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Summary

Implementation in R code of a step by step algorithm for
estimating linear classifiers with better discriminative
ability.

Modelling strategies in practical cases to increase the
capacity of discrimination of classifiers. The global
behaviour of the model is analysed (AUC for
discrimination ability, concordance probabilities).

Use of graphical methods, based on smoothing of density
functions, for selection of cut-offs that increase the clinical
utility of classifiers.
We can analyse easily the changes in the utility and
accuracy of the model changing the threshold.

Applications in prostate cancer.
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