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SUMMARY

Exponential smoothing is still very popular world-wide. Well-known and frequently
used statistical program packages contain this methodology. This paper demonstrates an
exponential smoothing program that provides a more sophisticated software solution for this
statistical method, namely it allows the automatic selection of the smoothing type, and it
calculates a ‘what if’ and a sensitivity analysis. 
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ome kind of forecasting has always been a need of companies who wanted to know
the near future. From the wide range of statistical methods decision makers have to find
the one that fits best their actual situation. In situations where decision makers wanted to
predict the continuation of a problem or relationship or wanted to forecast changes, time
series methods were applied. Since the early 60s, with the growth in size and complexity
of companies, the need for more and more sophisticated time series methods has
increased. Computer usage spread from the early 70s, and time-shared computers were
available at organisations. This spread of computers still continues. Makridakis et al.
(1983, p.14) stated that in the 80s the greatest gains would derive from application and
not new methods. New methods that are currently in the main stream are really
important. These methods include: chaos theory (anharmonic analysis), Gleick (1987),
wavelet analysis, Percival and Harold (1997) and others. However, a number of
researchers are still working on exponential smoothing (Aerts et al., 1997; Cleveland and
Loader, 1996; Efron and Tibshirani, 1996; Eilers and Marx, 1996; Fan et al., 1996;
Hardle and Marron, 1995; Jones, 1996; Jones and Foster, 1996; Marron, 1996; Wahba
et al., 1995). It is known world-wide and is effective; especially for short term
forecasting purposes. Compared with other methods, like the Box-Jenkins method,
exponential smoothing often has superiority (Makridakis et al., 1983). However, the
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number of computers, currently available and the time shortage of decision makers
emphasize the importance of software applications that use the ‘old’ methodology. 

Exponential smoothing is a relatively simple method. It does not need a profound
mathematical-statistical background, but it can provide a useful information base for
decision making. It has the best performance in the case of short-term forecasting, e.g.
monthly or weekly data (Makridakis et al., 1983). Most current statistical packages
(SPSS, Statistica) also comprise the exponential smoothing method. Software developers
are compelled to design better and better quality products. Software that can satisfy
consumers’ needs is very important. The time interval between two versions of leading
software packages has decreased to less than 1 year.

1. Theory

This section provides the theoretical background of the proposed computer program.
First the most important features of the time series will be described followed by a very
brief summary of the methodology of exponential smoothing.

Time series

If decision makers want to know more about the future, they have to collect data from
the past. This time series is used for forecasting patterns derived from data. It is
necessary to know the past behaviour of the process (if it is possible) in order to
recognise its future. A basic principle of forecasting is to project the connection with the
help of the knowledge of past and present data.

The simplest tools of time series analysis are computation of ratios and delineation of
time series. Delineation is a useful tool, because it makes possible to recognise the type
of function and constant trend. With mathematical-statistical methods one can do a more
profound analysis, because the knowledge of deeper processes and principles can help
with extrapolation.

Time series are always the results of observations, and researchers have to recognise
principles on the basis of these data. Nowadays the fast change in economy results in
time series a lot of breakpoints; sometimes a continuous length of time series is 5-6 years
or less. However, it is not always possible to prepare correct extrapolation because of
sudden changes. A more complex economic analysis is needed to determine the
probability of unchanged variables or a variable for which the variation can be calculated.

It is necessary to have an appropriate length of time series - it is said to be as long as
the extrapolated length (Makridakis et al., 1983). For a truly sound extrapolation about a
minimum of six-year series is necessary (Makridakis et al., 1983), where e.g. the first
three years can be computational periods (testing and estimating the seasonal component,
because seasonal fluctuation has to be repeated at least three times), and the other three
are the test periods. In the case of quarterly data it means 6·4 = 24 observed values. In the
case of monthly data 6·12 = 72 months are appropriate. In the latter case the test period
can start at 72/2 + 1 that is at 37th case. Analysing time series before extrapolation is
necessary in order to discover the seasonality, trend, cycles and accidental changes. A
longer time series provides chance of a better extrapolation.
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Ones of the most popular methods are trend analysis and extrapolation. Trend
analysis can discover permanent tendencies and trend-extrapolation is the projection of
this tendency. A firm has complex functional processes; a basic tendency of these
processes is the function of a lot of factors. A trend assumes a permanent effect in time,
which is not always the case in practice. These differences can be significant. Sometimes
it is a problem that last values of time series have greater influence on the future than
previous ones, however a traditional trend-extrapolation ignores these facts. This problem
can be solved by special procedures, e.g. exponential smoothing methods. Apart from
trend analysis, discovery of periodical fluctuation and limitation of developmental
conditions are important parts of extrapolation. It has to be stressed that using automatic
trend-extrapolation is not correct; and it can rarely give proper extrapolation. Sometimes
the application of other statistical or intuitive methods is more suitable. The longer the
period of extrapolation is, the bigger the ratio of intuitive methods is according to some
experts’ opinions. Sometimes the latter one is the only acceptable method.

The traditional decomposition of time series are the following (Makridakis et al.,
1983): trend, seasonality, cycles, and random changes. There may be a connection
between them in additive or multiplicative ways. In the case of an additive connection,
the model is:

Xt = Tt +S + C + Et

where

Xt = time series observations (t =1, 2,...n),
T = trend,
S = seasonality,
Ct = business cycles (for instance length of period can be e.g. 3, 9, 27, 54 year),
Et = residual, error term.

In the case of a multiplicative connection the model is as follows:

Xt=  Tt · S · C · Et 

Exponential smoothing method, moving average

Exponential smoothing is the improved version of the moving average. Traditional
moving average use identical weights for all cases,3 while exponential smoothing gives
greater emphasis on most current data, but it still does not need deep mathematical -
statistical knowledge. Additionally, it does not need long processing time from the
computer either.

The basic model of the exponential smoothing is (Makridakis et al., 1983):

St = �P + (1-�)Q

where Q and P change by the type of trend and seasonality. 

3 There are moving average methods using different weights as well.
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Pegels (1969) classified smoothing methods according to their seasonality and trend
component. 

This classification is shown in Table 1.

Table 1 

Connections between seasonality and trend

Trend Seasonality
none 

Seasonality
additive 

Seasonality
multiplicative

None Pt=Xt
Qt=St-1

Pt=Xt – Ct-L
Qt =St-1

Pt=Xt / Dt-L
Qt =St-1

Additive Pt = Xt

Qt = St-1 + At-1

Pt=Xt – Ct-L

Qt = St-1 + At-1

Pt=Xt / Dt-L

Qt =St-1 + At-1

Multiplicative Pt = Xt

Qt = St-1· Bt-1

Pt=Xt - Ct-L

Qt =St-1 · Bt-1

Pt=Xt / Dt-L

Qt =St-1· Bt-1

Source: Makridakis et al. (1983, p. 110).

where:

Xt = observed data,
St = smoothed data, �P+(1-�)Q,
At = � (St - St-1) + (1-�)At-1 (additive trend),
Bt = � (St/St-1) + (1-�)Bt-1 (multiplicative trend),
Ct = � (Xt - St) + (1-�)Ct-L (additive seasonality),
Dt = � (Xt/St) + (1-�)Dt-L (multiplicative seasonality),
L = length of seasonality.
Parameters �, �, � ,�, � are between 0 and 1.

Table 2 depicts equations of extrapolation (Ft+m) for different types of smoothing
methods for m seasons.

Figure 1. Connections among the factors of time series

Seasonality none Seasonality additive Seasonality
multiplicative

Trend
None

Trend
Additive

Trend
Multiplicative

Source: Makridakis et al. (1983, p. 69)



TIBOR KISS – BÉLA SIPOS150

Table 2

Equations of exponential smoothing methods 
Seasonality

Trend
none additive multiplicative

None St St + Ct-L+m St · Dt-L+m

Additive St + mAt St + mAt + Ct-L+m (St+ mAt)·Dt-L+m
Multiplicative St · Bt

m St · Bt
m + Ct-L+m St · Dt-L+m· Bt

m

Source: Makridakis et al. (1983, p. 111).

Let’s assume that n periods of observation are available at the time of t, and the
length of extrapolated period is m. Observed values are denoted by X, fitted values by F.
In this case the correct meaning of elements can be seen in Figure 2.

Figure 2. Extrapolation procedure

Past Current period Future

a) Past data

n periods of data

t

b) Extrapolated values for m periods

.......

F(t+1) F(t+2) ...            F(t+m)

c) Smoothed values

F(t-n+1)  ...                           F(t-2)        F(t-1)           F(t)

time

time

d) Error term:

e(t-n+1)=[X(t-n+1)-F(t-n+1)],.......e(t)=[X(t)-F(t)]

X(t-n+1) X(t-2) X(t-1) X(t)

e) Forecasting error (ex-post), if X(t+m) is available:

[X(t+1)-F(t+1)]... [X(t+m)-F(t+m)]

f) Division of past history data to estimation and test periods:

time

time

X(t-n+1) ... X(t-k)    X(t-k+1)...X(t-2) X(t-1) X(t)

Estimation Test period

(t-n+1)-(t-k) (t-k+1)-(t)

(t-k+1): starting test period

Source: Part of the figure is based on: Makridakis et al. (1983, p. 66).
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Algorithms of applied methods

Pegels’ classification contains 9 methods, three additional methods are selected from
Makridakis (1983). The first 9 rows of the following list comprise the combinations of
the three seasonality types and the three trend components.

1  =  Single exponential smoothing
2  =  Seasonality - additive, trend none
3  =  Seasonality - multiplicative, trend none
4  =  Seasonality - none, trend additive  (Holt’s method)
5  =  Seasonality - additive, trend additive
6  =  Seasonality - multiplicative, trend additive (Winters’ method);
7  =  Seasonality - none, trend multiplicative
8  =  Seasonality - additive, trend multiplicative
9  =  Seasonality - multiplicative, trend multiplicative
10 =  Adaptive Response Method (ARRSES)
11 =  Brown one-parameter linear method
12 =  Brown one-parameter quadratic method

T1 – Normal exponential smoothing: 

Ft + 1 = � Xt + (1 - �) Ft

or (according to Table 1):

St = � Xt + (1 -�) St - 1

Initialisation: given that F1 is not known, the most frequent initialisation is: F1 = X1.
Extrapolation horizon is only 1 period: Ft +1 = St + 1

T2 – Seasonality additive, trend none:

St = � (Xt - Ct-L) + (1 - �) St - 1
Ct = � (Xt - St) + (1 -�) Ct -L

where L = the length of a season, e.g. 4 in the case of quarterly data.

Initialisation: See Method 6 for the initialisation of C.
Extrapolation for m periods: Ft + m = St + Ct - L + m

T3 – Seasonality multiplicative, trend none:

St = � (Xt  / Dt - L) + (1 - � )St - 1
Dt = � (Xt / St) + (1 - � )Dt - L

Initialisation: See Method 6 for the initialisation of D (seasonal component).
Extrapolation for m periods: Ft + m = St · Dt - L + m
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T4 – Seasonality none, trend additive (Holt’s method):

St = � Xt + (1 - �)(St - 1 + At - 1)
At = � (St - St - 1) + (1-�) At - 1

This procedure is identical with Holt’s method, which applies the parameter of bt,
instead of At, and � instead of ß.

Holt’s linear two parameter method: additive linear trend for t observed date with
two parameters [� and �]:

St = � Xt + (1 - �)(St - 1+ bt - L)
bt = � (St -St-1) + (1 - �)bt - 1

Initialisation: St (initial value) and b1 (trend) should be determined. S1 can be equal to
X1. b1 (trend component) can be determined by different ways. Two of them are:

3
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�����

�

��
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Extrapolation for m periods: Ft + m = St + mbt 

T5 – Seasonality additive, trend additive:

St = � (Xt – Ct-L) + (1 - � )(St-1 + At-1)
At = � (St – St-1) + (1 - �) At-1
Ct = � (Xt - St) + (1 -�) Ct -L

Initialisation: See Method 6 for the initialisation of C, and Method 4 for the
initialisation of the trend component (At).

Extrapolation for m periods: Ft + m = St + mAt + Ct -L+m

T6 – Seasonality multiplicative, trend additive, Winters’ three parameter trend and
seasonality method:

This method comprises three smoothing methods. The overall smoothing equation is: 

St = � (Xt / (Dt-L)) + (1 - �)(St-1 + At-1)

Trend component: 

At = � (St-St-1) + (1 - �)(At-1)

Seasonal component: 

Dt = � (Xt / St) + (1 - �)(Dt-L)

Forecast: Ft+m = (St+btm) It-L+m 
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Initialisation: Let us assume that L=4 (quarterly data). In this case I1 to I4 should be
estimated by means of the first four X values (I1=X1 / ((X1+X2+X3+X4)/4)), and b can be
estimated as follows (Makridakis et al., 1983, p.108): 

�
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�
�

�

 ���
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XX

L
XX

L
XX

L
b LLLLL 22111

where it is convenient to use two complete seasons.
Extrapolation for m periods: Ft+m = (St+Atm) Dt-L+m

This method is the same as Winters’ method which applies parameter bt for trend, and
parameter It for seasonality:

St = � (Xt / (It-L)) + (1 - �)(St-1 + bt-1)
bt = � (St-St-1) + (1 - �)(bt-1)
It = � (Xt  / St) + (1 - �)(It-L)

Ft+m = (St+bt m) It-L+m

T7 – Seasonality none, trend multiplicative:

St = �Xt + (1 - �)(St-1 · Bt-1)
Bt = � (St / St-1) + (1 - �)(Bt-1)

Initialisation: See Method 4 for the initialisation of the trend component (Bt).
Extrapolation for m periods: Ft+m = StBt

m It-L+m

T8 – Seasonality additive, trend multiplicative:

St = � (Xt- Ct-L)+ (1 - �)(St-1 · Bt-1)
Bt = � (St / St-1) + (1 - �)(Bt-1)
Ct = �  (Xt - St) + (1 -�) Ct-L

Initialisation: See Method 6 for the initialisation of C, and Method 4 for the
initialisation of the trend component (Bt).

Extrapolation for m periods: Ft+m = St Bt
m +Ct-L+m

T9 – Seasonality multiplicative, trend multiplicative:

St = � (Xt / Dt-L)+ (1 - �)(St-1 · Bt-1)
Bt = � (St / St-1) + (1 - �)(Bt-1)
Dt = � (Xt / St) + (1 -�) Dt-L

Initialisation: See Method 6 for the initialisation of D, and Method 4 for the
initialisation of the trend component (B).

Extrapolation for m periods: Ft+m = StDt-L + mBt
m
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Using the program of ExpS in the case of types 5, 6, 8 and 9 (where both the trend
and seasonal components are calculated), the first parameter (/1) is the parameter of
seasonality (additive: �, multiplicative: �); the second (/2) is the parameter of the trend
(additive: ß, multiplicative: �).

T10 – Adaptive Response Method (ARRSES):

The method will always change the parameter �t automatically if the pattern changes
in the time series, therefore the time-invariant � value will be replaced by the time-
dependent �t.

Ft + 1 = �t Xt + (1 - �t) Ft ,

where

�t+1 = �E t / Mt�,
Et = � et + (1 - �)(Et-1),
Mt = � �et�+ (1 - �)(Mt-1),
et = X t - F t,
� and � are between 0 and 1,
et is the error term, 
Et  is the error term of smoothing and
Mt is the absolute error term of smoothing.

About the value of �t+1 the following note should be added: if forecasted values are
good, then et will frequently change, therefore the numerator (Et), together with �t+1 will
be a small value. As a consequence, smoothed values get bigger weights, according to the
original smoothing equation. However, if the sign of et does not change for a longer time,
then the value of �t+1 will be higher, with a bigger weight of observed data.

Initialisation:

F 2 = X1,
�2 = �3 = �4 = � = 0.2,
E1 = M1 = 0 and
� is a constant term that can control �t. 

The of order calculation is the following:

1. e2;  2. E2;  3. M2  4. F3;
5. e3;  6. E3;  7. M3  8. F4;
9. e4; 10. E4; 11. M4 12. F5;
13.e5; 14. E5; 15. M5 16. �5; 17. F6;
18.e6; 19. E6; 20. M6 21. �6; 22. F7; etc.

Extrapolation: only 1 period ahead.
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T11 – Brown one parameter linear method:

This method is a double exponential smoothing. The first smoothed values ( St1) will

be smoothed again ( St2 ) because there is an assumed linear trend in the time series.
Basically, it estimates a linear trend. 

This method gives decreasing weights for past data: 
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T12 – Brown one parameter quadratic method: 

This method assumes a second order trend in the time series, therefore a third
smoothing step is performed. Basically, it estimates a parabola of a second degree.
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Univariate statistics4

This exponential smoothing program uses different statistics of the error terms in
order to measure the ‘goodness of fit’. Four of them participate in the model building
process of the program: MAE, SDE, Durbin–Watson statistic and Theil’s U statistic (see
their role in the overview of the program in the next section). For other statistics only the
calculation method will be described here.

a) ME – Mean Error

,FXe

,n/eME

iii

n

i
i

��

��
�1

where 

Fi is the smoothed value,
Xi is the observed values.

The problem of this statistic is that positive and negative error terms equalise each
other therefore further statistic, MAE, SSE and MSE were created to eliminate this
problem.

b) MAE – Mean Absolute Error

MAE is the average of absolute values of the error terms. The less the value is, the
closer the smoothed values are to the observed ones.

�
�

�

n

i
i n/eMAE

1

c) SSE – Sum of Squared Errors

�
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�
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i
ieSSE

1

2

d) MSE – Mean Squared Error

n/eMSE
n

i
i�

�

�

1

2

e) SDE – Standard Deviation of Errors

� �1
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2
�� �

�

n/eSDE
n

i
i

4 Statistics, used in ExpS for Windows are described here on the basis of Makridakis et al., (1983).
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f) PEi – Percentage Error
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g) MPE – Mean Percentage Error
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h) MAPE – Mean Absolute Percentage Error
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i) Theil’s U statistic
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This is the most important statistic in the program. This value is calculated at each
iteration, and the selection of the smoothing type and parameter set is based on the
minimum value of Theil’s U statistic. The closer the smoothed value is to the
observed value, the smaller the nominator of is. This value is close to zero, if a good
smoothing model has been applied. If the value is bigger than 1, then it is better to
replace Ft+1 with Xt, because this ‘naiv’ method provides a better extrapolation as a
whole in the case of the simple exponential smoothing. If trend or seasonal component
is calculated, then forecasted values will be adjusted accordingly with these
parameters, therefore it can provide a better forecasting than the value of the previous
period.

Another (similar) measure of evaluation is MBA.

j) MBA – McLaughlin Batting Averages

� � 1004 ��� UMBA

k) DW – Durbin–Watson statistic
If Fi smoothed values comprise all important factors (trend, seasonality, cycles) then

ei-s are expected to be free of autocorrelation. DW statistic is one way to test the first
order autocorrelation. This value is between 0 and 4 with an expected value of 2. The
closer the value to 2 is, the more random the change and size of the error terms are,



TIBOR KISS – BÉLA SIPOS158

therefore, the better the chance is that subsequent error terms are not correlated with each
other.
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2. ExpS for Windows – a computer program

ExpS for Windows allows the automatic selection of the smoothing type, and
additionally, it calculates a ‘what if’ and a sensitivity analysis. 

The program starts with the main screen, shown in Figure 3. Users can set different
parameters manually, or can ask for their automatic calculation. Initial parameters,
smoothing parameters, length of seasonality, trend and seasonal parameters can either be
set manually, or be calculated by the program.

In the case of a large computer speed or a lot of available time, users can set all
parameters for automatic calculation. However, it is reasonable to ask for some
parameters as automatic ones, while others have to be set manually. It is a good way to
set manually the initial value for F1 (to X1), and the length of seasonality  (to the
theoretical value, such as 4 in the case of quarterly data). This procedure is used in the
application part of this paper.

Trend and seasonal parameters between 0 and 0.2 are frequently used in practice
(Makridakis et al., 1983), therefore, the first option is the ‘Scale of Trend, Seasonal par.’
section comprises only these values. In later stages user can ask for more subtle
calculation. However, the most important step is at the first stage to set the ‘type’ to
‘automatic search’ as it happens to be in this example in the main screen. The program
scans all the possibilities and provides one case from each type in order to compare
different types. The best type is selected automatically, and details of the best model are
described just after the summary table. The basic tool of the selection is the Theil’s U
statistic, discussed before.

After this automatic selection a summary table is provided (see Table 4 in the
application section). The applied method will always assume that the recognised trend or
seasonality is stable in the time series. If for example the ninth method was the best, then
stable multiplicative trend and seasonality would be assumed. If this pattern changes
during the test period, then the extrapolation will be uncertain. In such a case, the
stability of time series has to be checked. There is a built in sensitivity analysis to check
this factor. The program has a parameter of ‘beginning of test set’. It means that the
residuals are calculated only after this period to the end of the time series. If the
seasonality and trend are stable in the time series, then different ‘beginning of the test set’
will provide similar results, similar to U statistics. This program’s sensitivity analysis sets
three different test periods and calculates the appropriate U statistics. Obviously, all the
other parameters and the types of smoothing are unchanged. These U values can be
applied to test the stability of the model, since the model can be considered as a stable
one if U values are close to each other. There is no exact measurement for the size of this
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type of variation, it is only an experimental value. In case of stable data, the selected
method can probably be applied effectively for extrapolating purposes. If the time series
is not stable, the extrapolation can be uncertain. In this case the method of CENSUS II
(Herman–Kiss, 1987) can be applied which is appropriate for managing the changing
seasonality and trend, in the case of monthly data. In ExpS these starting periods are the
half, two thirds and four fifths of the time series, respectively. In the case of quarterly
data and a six-year time series (6·4 = 24 observations) these data are 13, 19 and 21
respectively. In the empirical part of this paper, we have 81 monthly data, where these
starting periods are 41, 54, 64 (see in Section 4).

After the selection of the best parameter set, a ‘What if’ analysis is performed within the
program (see Figure 4 in the application section). We explain the ‘What if’ analysis in the
following example. Let us assume that we have quarterly data, and we are interested in the
results of this model in order to compare them to actual data. Obviously, it is impossible to
compare them to actual future values; therefore we can only use our own last years’ four
observations as actual data. A reasonable way is to compare the estimated results with
actual data, if we assume that we have known this model for a year, and performed an
extrapolation. This is the so called ‘what if’ analysis: ‘What would have happened, if we
had known this model earlier?’ This model provides extrapolated values, denoted by '=',
with these optimal parameters and values. The observed values can be found in the last
column. Comparing observed values to fitted ones, the decision maker can assess the
reliability of the given model. It is not impossible that a year earlier we had a different
parameter set for the shorter time series, however, one solution had to be selected.

The main screen of the program is depicted in Figure 3. Data on the main screen are not
relevant now; displaying the structure of the program is the only purpose of this screen.

Figure 3. Main Screen of ExpS

Exponential Smoothing [Complete]
Update Results

Output Data

Input data

Sensitivity
Exit

About

PreviousUpdat

Command: expsw SALE.DTA/k 55/m 4 k4

ExpS
U:        0.949
D-W:    1.123 SDE:      3.53

MAE:      2.62

Extrapolated Values:           4
Starting value (F1):            55

Beginning of Test set:        10

Iteration limit:     0.01
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Clicking the Update Results (RUN) button will result in the actual running of the
ExpS program with the preset parameters. The Results button will show the results of the
model.

Sensitivity analysis can help a faster model building (see the explanation before).
With the help of the following parameters, the user can build up an arbitrary model. 

Starting value (initial value) (F1) is of decisive importance in the case of each
exponential smoothing method. They can frequently change the results to a great extent
in either a positive or a negative direction. Estimation of a good quality initial value is
essential. Iteration of the initial value is the following: the program generates five
different initial values, and the best value is selected (where the U statistic is the smallest
one). The five possible initial values are the following: 

– minimum,
– maximum,
– mean,
– mean-minimum/2,
– minimum+(maximum-minimum)/2

computed from the first part of the time series in study.
The ‘Season’ field will set the number of periods in one season. If there is no

seasonality, it can be set to zero. In the case of Automatic search the program finds the
best of the preset period-lengths that may be 4, 5, 7, 12 or 24. 

There is a command line in the middle of the screen, which will be used at the
updating process.

Apart from the methodological uniqueness, some other special features, user friendly
solutions exist within the program.

1. Users can build up their own model in one screen by updating (perhaps) the four
most important statistics, the U statistics, the DW statistics, the MAE and the SDE (for the
error terms; see Section 1). The ‘Update’ and ‘Previous’ buttons will always switch the
current and the previous results to follow the changes. If the user has run a different
model previously, then the ‘Previous’ button will show the statistics of that model.

2. In the case of an uncertain structure, an automatic selection of the length of the
seasonality is allowed (see the middle of the main screen).

3. The user can see the observed, forecasted values and the error term in one common
chart (see Figure 4 in the application section).

3. Comparison with other program packages

SPSS for Windows5 7.5 and Statistica for Windows6 4.3 are the bases of this
comparison. 

All the programs allow for selecting both the trend and seasonal components
separately, which means an arbitrary combination of theirs. ExpS uses Makridakis’
suggestion for the trend component: the choice among none / additive / multiplicative

5 SPSS Inc. 1996.
6 StatSoft Inc. 1993.
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types of trend (see the theoretical part) is offered. SPSS and Statistica uses four different
types of trends: none / linear / exponential / dumped. All the programs use none / additive
/ multiplicative type seasonal components. 

All the programs are able to perform the automatic calculation of the initial values of;
the smoothing (α), the trend (γ); and the seasonal parameters (δ). The methodology of the
calculation of the initial value is not known in SPSS and Statistica. Table 3 depicts the
main features of the mentioned program packages.

Table 3 

Comparison of different exponential smoothing programs 
Features ExpS SPSS Statistica

Automatic selection of smoothing parameter X X X
Automatic trend parameter selection X X X
Automatic seasonal parameter selection X X X
Automatic initial value calculation X X X
Automatic selection of seasonality X
Automatic selection of the method X
Comparison of different methods X
Sensitivity analysis X
What if analysis X
ACF* calculation X

* Autocorrelation function.

SPSS and Statistica are complex program packages, therefore they allow using the
smoothed values as a separate variable. ExpS allows saving data in case one would like
to use the original and fitted values of the best model. There is a special data file with
‘.ft1’ extension. These data can be used for other statistical (e.g. SPSS, BMDP),
graphical (Harvard Graphics), Spreadsheet (Excel, Lotus), or Database (Paradox, Dbase)
programs, because it is an ASCII text file. 

4. Application – The number of visitors in Hungary

Data are collected about the number of visitors in Hungary (from European countries),
from January 1992 to September 19987 that means 81 monthly data.8 Observation for 1988
can be followed on Figure 4 (‘X-i’ column). ExpS for Windows prepared a summary table
about the results of the twelve methods that is shown in Table 4, where the explanation of
columns:

T – type, smoothing method,
Alpha – value of α,
p1, p2 – the first (trend) and second (seasonal) parameters, if any,
L – length of one season, if any.

7 Source: Statisztikai Havi Közlemények. Központi Statisztikai Hivatal, Budapest.
8 Data are available from the authors: kisst@ktk.jpte.hu
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The other columns displayed are explained in Section 1.

Table 4 

Summary table of different methods about the number of visitors in Hungary
T Alpha p1 p2 L ME MAE MAPE SDE MSE DW U MBA

1 1.050 0.000 0.000 0 -5.7 615.3 19.0 850.7 706003 1.951 0.993 301
2 0.350 0.100 0.000 12 -54.7 192.9 6.1 253.2 62533 1.414 0.384 362
3 1.050 0.100 0.000 12 848.3 930.0 25.8 1278.1 1593604 0.553 1.518 248
4 1.050 0.100 0.000 0 -5.8 636.5 20.0 890.8 774097 1.959 1.036 296
5 0.750 0.100 0.100 12 -24.7 204.2 6.7 262.5 67210 2.043 0.406 359
6 0.450 0.200 0.100 12 1026.9 1046.5 28.9 1370.2 1831564 0.393 1.660 234
7 1.050 0.100 0.000 0 -112.2 639.5 20.2 926.6 837695 1.907 1.029 297
8 0.750 0.100 0.100 12 -32.2 207.3 6.8 263.6 67801 2.071 0.404 360
9 0.450 0.200 0.100 12 1013.5 1035.0 28.5 1359.7 1803582 0.399 1.646 235

10 0.150 0.100 0.000 0 91.9 697.3 22.7 963.8 906209 0.828 1.378 262
11 0.650 0.000 0.000 0 -30.4 673.8 21.8 986.2 948922 1.918 1.133 287
12 0.350 0.000 0.000 0 -17.9 780.1 25.4 1067.6 1111892 1.416 1.361 264

Table 4 shows that method 2 – ‘additive seasonality – no trend’ – has the smallest U
value: 0.384. The parameter set of this model is further refined. Method 2 was set at the
‘type’ section of the program, and we have searched for a better parameter set. The final
U value was 0.379. The smoothing parameter α and the seasonal parameter equally have
a final value of 0.4. Initial value was 2398. The sensitivity analysis of this result can be
seen in as follows: 

Alpha : 0.4000
Beginning of Test:    41      U: 0.3791
Beginning of Test:    54      U: 0.3063
Beginning of Test:    64      U: 0.2993

Ratio (R) of the smallest and biggest U values denotes 21 percent difference. 
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(In the case of absolute stability – with the same U values – the difference is 0
percent). 

The difference seems to be big enough to reject the model. However, the second and
the third U statistics are very close to each other, and additionally, these data are closer to
the current date. Consequently, this analysis can be accepted. A decision maker should
have a look at the ‘What if’ analysis as well, to study the behaviour of the ‘quasi’
forecast. Figure 4 depicts the ‘What if’ analysis of the model.

These forecasts are sometimes rather accurate. Comparing the values of observed (X-
i,‘+’) and ‘what if’ (Whatif ‘=’) values it can be seen they are very close to each other,
apart from the latest three periods (the last quarter of the year). As a consequence,
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decision makers can accept this model and can use the forecasts in the future. However,
forecasts for the last quarter need special attention.

di

ex
Figure 4. What if analysis

Type ( 2)  : Seasonality - additive, Trend none

 Time X-i (+)  F-i (-) WhatIf (=) -> Fitted values               Error    WhatIf
  72  2661.4  2551.8 ł           -=                         ł   109.64( 2662.06)
  73  1866.2  1772.2 ł    -=                                ł    94.02( 1838.62)
  74  1816.1  1807.9 ł     =                                ł     8.22( 1836.71)
  75  2193.2  2306.0 ł        +=                            ł  -112.76( 2331.50)
  76  2562.3  2512.4 ł           =                          ł    49.85( 2583.10)
  77  2612.6  2733.5 ł            +=                        ł  -120.87( 2784.18)
  78  2852.5  2763.3 ł             -=                       ł    89.17( 2862.38)
  79  3610.2  4019.6 ł                    +   =             ł  -409.35( 4082.94)
  80  4854.7  4997.2 ł                               +- =   ł  -142.54( 5224.37)
  81  3000.0  3025.0 ł               *  =                   ł   -25.03( 3309.17)
------------------------------------------------------------------------------
  82          2746.3 ł             -                        ł
  83          2435.1 ł          -                           ł
  84          2394.2 ł          -                           ł
  85          1567.0 ł   -                                  ł
  86          1544.5 ł  -                                   ł
  87          2010.3 ł      -                               ł
  88          2300.9 ł         *                            ł
  89          2461.0 ł          -                           ł
  90          2589.6 ł           -                          ł
  91          3690.5 ł                     -                ł
  92          4896.0 ł                               -      ł
  93  
The last figure of this paper shows the line-diagrams of the observations and the line-
agrams of the observations and the forecasts.

Figure 5. Comparison of forecasts and observations

                                 Forecasts                                                   Observations
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As a summary, it is reasonable to say that ExpS for Windows is a useful tool in
trapolating the number of visitors in Hungary. The automatic type selection helped to 
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choose the best method; the sensitivity analysis provided a deeper insight into the
stability of the model; and finally the ‘what if’ analysis helped us to evaluate the
behaviour of the time series in order to decide whether to accept the results or not.
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