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This paper focuses on standard error estimation in Fixed-Effects panel models if there is 
serial correlation in the error process. Applied researchers have often ignored the problem, 
probably because major statistical packages do not estimate robust standard errors in FE 
models. Not surprisingly, this can lead to severe bias in the standard error estimates, both in 
hypothetical and real-life situations. The paper gives a systematic overview of the different 
standard error estimators and the assumptions under which they are consistent (in the usual 
large N, small T asymptotics). One of the possible reasons why the robust estimators are not 
used often is a fear of their bad finite sample properties. The most important results of the 
paper, based on an extensive Monte Carlo study, show that those fears are in general unwar-
ranted. I also present evidence that it is the absolute size of the cross-sectional sample that 
primarily affects the finite-sample behaviour, not the relative size compared to the time-
series dimension. That indicates good small-sample behaviour even when .  
I introduce a simple direct test analogous to that of White [1980] for the restrictive assump-
tions behind the estimators. Its finite sample properties are fine except for low power in very 
small samples. 
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Thi

  

s paper focuses on Fixed-Effects panel models (FE) with exogenous regressors 
on pooled cross sectional and time series data with relatively few within-individual ob-
servations. Empirical studies that estimate this kind of FE models are abundant, and they 
routinely estimate standard errors under the assumption of no serial error correlation 
within individual units. In the past three years, the top three economics journals with a 
focus on applied empirical research published 42 papers that estimated linear FE models 
with time series within individual units.2 Out of the 42, only 6 took serial correlation into  

* My first thanks go to John Bound and Gary Solon for their suggestions and support. Jinyong Hahn, Steven Levitt, 
Shinichi Sakata and Douglas Staiger provided many helpful comments. All remaining errors are mine. Correspondance: 
kezdi@econ.core.hu. 

1 Budapest University of Economics, Institute of Economics, Hungarian Academy of Sciences (IE/HAS) and Central 
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2 The examined journal issues were the following: American Economic Review, Vol. 88. No. 4. to Vol. 91. No. 3.; Journal 
of Political Economy Vol. 106. No. 4. to Vol. 109. No. 3.; and Quarterly Journal of Economics, Vol. 103. No. 3. to Vol. 106. 
No. 2. Only papers that estimated linear FE models on panel data with time-series  within the individual units were 
considered. 
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account when estimated the standard errors.3 
Serial correlation in the error process affects standard errors in FE models with more 

than two observations per individual unit, unless all right-hand side variables are serially 
uncorrelated. The stronger the correlation and the longer the time horizon is, the larger is 
the effect. Serial correlation consistent standard error estimators for panel models without 
Fixed-Effects are covered by most econometrics textbooks. Same is not true, however for 
FE. Similar estimators were developed explicitly for FE models by Kiefer [1980], Bhar-
gava et al. [1982], and Arellano [1987], but they have been overlooked by practitioners. 
It seems that worries about finite sample properties are responsible for this fact. Major 
statistical computer packages do not allow for any robust standard error estimation in FE 
models.  for example, calculates standard errors that are robust to serial correla-
tion for all linear models but FE (and random effects). It does so for an analogous model 
but it explicitly cautions against using robust methods in samples with long time-series 
within individual units.

TMStata

4 As we will see, however, even this warning is unwarranted. 
In this paper I give a systematic overview of standard error estimation in FE models, 

together with the assumptions under which the estimators are consistent. I also introduce 
a very simple test for the assumptions in question (it is analogous to White's 1980 direct 
test for heteroskedasticity). The asymptotic results consider the case when T is fixed and 

, and they are straightforward applications of White's [1984] general results. The 
novelty in this paper is a thorough examination of the finite-sample properties of the es-
timators and tests. The Monte Carlo study considers various combinations of the time-
series and cross-sectional sample size, and the degree of serial correlation and cross-
sectional heteroskedasticity. 

∞→N

The most important result is that the general robust standard error estimator, known in 
other models as the ‘cluster’ estimator (introduced to FE by Arellano [1987]) is not only 
consistent in general but it behaves well in finite samples. The Monte Carlo experiments 
reveal that the cluster estimator is unbiased in samples of usual size although it is slightly 
biased downward if the cross-sectional sample is very small. The results suggest that it is 
the cross-sectional dimension itself that matters, not its relative size to the time-series di-
mension ( TNN notand )

  

. The variance of the estimator naturally increases as the sam-
ple gets small but stays moderate at usual sample sizes. Kiefer's [1980] estimator is consis-
tent under the assumption of conditional homoskedasticity across individuals. Quite natu-
rally, when consistent, it is superior to the robust estimator in terms of both variance and 
small-sample bias. The bias of the estimators that assume no serial correlation is substantial 
when the assumption is not met, and it is larger than the finite-sample bias of the robust es-
timators at any sample size. The bias is a function of serial correlation both in the right-
hand-side variables and the error term. The test that looks at the restrictive assumptions de-
livers the desirable size and power properties in relatively large samples. Its power, how-
ever, is quite low in small samples unless the serial correlation is very strong. 

Bertrand, Duflo and Mullainathan [2001] have drawn attention to robust standard er-
ror estimation in the context of a special FE model, the ‘Difference-in-Differences’ (DD) 
model. Typically, DD models estimate effects of binary treatments on different individ-

3 Two did that by a parametric specification of the error process, one by using the cluster estimator (see later). The other 
three did not specify the standard error estimator they used. 

4 ‘Why is it dangerous to use the robust cluster ( ) option on areg (areg estimates the same Fixed-Effects model as xtreg, 
fe)?’ http://www.stata.com/support/faqs/stat/aregclust.html. I thank John Bound for this note. 
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ual units by comparing before and after treatment outcomes. Serial correlation in the er-
ror process has especially large effect on standard errors in these models because the 
main right-hand-side variable is highly correlated through time (the binary treatment 
variable changes only once in most cases). The problem is irrelevant if only two points in 
time are compared but it can lead to a severe bias to conventional standard error esti-
mates in longer series. Bertrand et al. report simulation results on frequently used data 
(yearly earnings for US states) that show 45 to 65 percent rejection rates of a t-test on 
‘placebo’ binary treatments instead of the nominal size of 5 percent. This size distortion 
is probably due to downward biased standard errors. Bertrand et al. suggest an intuitively 
appealing simulation-based method to overcome the problem. Apart from being a little 
complicated for applied research, their method is specific to binary treatment effects. The 
alternative solutions I present here are more conventional, easier to implement, and gen-
eral to all FE models. They also behave well in finite samples. 

The asymptotic results are stated in the main text. To keep things simple, I consider a 
data generating process that is i.i.d. in the individual units. This simplification is justified 
because our main concern is about the process within the individual units. The usual T 
fixed,  asymptotics is considered for the results. The proofs are straightforward 
applications of standard i.i.d. results (White [1984], for example). For this reason they are 
not presented in the paper. Exceptions are the simplified versions of the asymptotic co-
variance matrix of the FE estimator under the appropriate assumptions. They are derived 
in the main text because of their importance. 

∞→N

The remainder of the paper is organized as follows. The first section introduces the 
assumptions underlying the data generating process, the model, and the Fixed-Effects es-
timator. The second part presents the sampling covariance matrix of the FE estimator and 
its simplified versions under restrictive assumptions, and it introduces the estimators. The 
third part examines the finite sample properties of the four proposed estimators. The 
fourth part introduces a direct test for the restrictions and examines its finite sample 
properties, and the last part concludes. 

SETUP 

Data generating process 

Assume that a T dimensional random vector  and a iy KT ×  dimensional random ma-
trix  are generated by an independent and identically distributed (i.i.d.ix ) process. More 
formally, we assume that the ( )1+× KT  dimensional random process on 

 is i.i.d., with finite fourth moments. Note that there is no restriction in the time 
series dimension. In particular, nonconstant variance, unit roots, an unequal spells are al-
lowed. We can do so because of the T

{ } Niii xy ∈,  
{ PF , }S ,

 fixed assumption. All asymptotic results will be 
driven by the cross-sectional properties of the process. 

The intuition behind the data generating process (DGP) assumption is that each i is an 
individual observation that is drawn from a population in a random fashion. The assump-
tion implies that there is one [ ]iyE  and one [ ]ixE , which are the population means. The 
goal of the exercise is to reveal the relationship between y and x in the population. 
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Model 

For estimating this relationship, consider a linear panel model with exogenous  
regressors and individual-specific constants (‘Fixed-Effects’).The panel has a cross-
sectional dimension i and a time-series dimension t. 

ititiititit uxxy +β′+α=ε+β′=  /1/ 

or, in vector notation, 

iiii uxy +β+α= 1 ,  /2/ 

where  is [ ′= iTii yyy ,,K1 ] 1×T , [ ] ′′′= iTii xxx ,,K1  is T ,K×   itiit u+α=ε ,  is a  sca-

lar, 

iα

[ ] ′= 1,,1,1 K 1×1  is T , and [ ] ′= iTi uu ,,K1iu  is 1×T , N,,Ki 1= , and t . T,K,1=
For future reference, let  be the ikx 1×T vector of the k-th right-hand side variable so 

that . [ ]iKii xxx ,,1 K=
The intuition behind the model is the following. We would like to uncover something 

about the conditional mean of y given x, which may be different across individuals. /2/ 
models the conditional mean of y given x in a linear fashion. There is an i-specific inter-
cept denoted by . It is interpreted as the conditional mean of given The 
model is restrictive in that apart from the intercept this conditional mean is the same 
across both the i

iα iy .0=ix

 and the t dimension. One interpretation of β  is that it is a population av-
erage of the relationship after accounting for the i-specific intercept. The model does not 
put any restriction on the covariance of  and ix iα , the latter treated as a random variable 
itself. Formally, we assume that all relevant moments exist and that [ ] 0=′iuikxE  for 

. On the other hand, we allow for Kk ,.2,1 K= [ ] 0≠α ii xE . 
We want a consistent estimator for β  and its asymptotic covariance matrix. We can 

take the limit in both the cross-sectional and the time-series dimension, so it is important 
to be explicit what we mean by consistency and an asymptotic distribution. In this paper, 
the , T∞→N  fixed asymptotics will be considered. In that case, it is the limiting distri-
bution of ( )β−β̂N   that we are interested in. 

The ∞→N

(N >

, T 

)

fixed asymptotics is a natural setup for household or individual pan-
els like the PSID (the Panel Study of Income Dynamics of the University of Michigan). It 
is also a natural approximation for country or regional panels if the time series is rela-
tively short . The simulation results suggest, however, that the proposed estima-
tors behave well also in the finite 

T
( )TN <  setup. 

The Fixed-Effects estimator 

OLS with N constants for capturing each of the iα  is a natural candidate for estima-
tion. This estimator is often called the ‘least-squares dummy-variables’ estimator or 
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LSDV in order to distinguish it from OLS with only one constant. For computational rea-
sons, however, it is common to use the Fixed-Effects (FE, also known as Within-) esti-
mator instead. FE is OLS on mean-differenced variables, which are defined as  

[ ] ′−−≡
×

iiTii
T

i yyyyy ,,~
1

1
K ,  [ ] ′−−≡

×
iiTii

KT
i xxxxx ,,~

1 K , and  

[ ] ′−−≡
×

iiTii
T

i uuuuu ,,~
1

1
K   

where  ∑
=

=
T

t
itTi yy

1

1  etc. 

To simplify notation, let TTTTTT
IM 111 ′−=

×
. Note that M is idempotent. Then, 

ii Myy =~ , ii Mxx =~  and iMuiu =~ . The mean-differenced equation to estimate is 

iii xy u~~~ +β= , and the Fixed-Effect estimator for β  is defined as 

xyxx

N

i
ii

N

i
iiFE SSyxxx ~~~~~~ˆ 1

1

1

1

−

=

−

=
=







 ′






 ′≡β ∑∑ . /3/ 

i

N

i
iNxx xxS ~~~

1

1 ∑
=

′≡ , and  i

N

i
iNyx yxS ~~~

1

1 ∑
=

′≡ . A standard result is that FE and the LSDV es-

timator for β on levels are computationally equivalent. 
Recall that we assume that the data generating process is i.i.d. 

)
in the cross-sectional 

dimension, and therefore the ( ii xy ~,~  are  i.i.d., too.  is consistent for  in the 
, T

FEβ̂ β
∞→N  fixed asymptotics without further assumptions about the time-series dimen-

sion. The conditional covariance matrix of iu~  affects the asymptotic covariance of . 

Serial correlation and heteroskedasticity of any kind would also make  inefficient. 

The rest of the paper focuses on consistent estimation of the sampling covariance of . 
Efficient estimation of β  is not addressed here.

FEβ̂

FEβ̂

FEβ̂

5 

ASYMPTOTIC DISTRIBUTION  
OF THE FIXED-EFFECTS ESTIMATOR 

The covariance matrix of  is easy to derive because of cross-sectional independ-
ence and the linearity of the model. 

FEβ̂

  
5 Some of the introduced covariance matrix estimators could be used  for efficient estimation (feasible GLS) of the pa-

rameters. Although that seems like a natural extension of my analysis, it would introduce other problems that should be 
dealt with. It could aggravate bias from measurement error or misspecification of the timing of binary variables or lagged 
effects. 
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 ′+β= ∑
=

−
N

i
iiNxx uxS

1

11 ~~~
. 

Proposition 1. Suppose that { } Niii xy ∈,  is i.i.d. with finite second moments. Consider 
the Fixed-Effect (FE) panel model /1/ and /2/ and assume that [ ii xxE ]~~′  and 

i

N

i
iNxx xxS ~~~

1

1 ∑
=

′=  are positive definite. The FE estimator defined by /3/ is consistent and 

asymptotically normal with covariance matrix D defined below /5/ and /6/  

β→=β −
yxxxFE SS ~~ˆ 1      prob – P    as    ∞→N ,  and 

( ) ( INND
A

FE ,0ˆ21 ∼β−β− ) ,  where /4/ 

[ ] [ ] 11 ~~~~ −− ′′≡ iiii xxVExxED    and        /5/ 

[ ]iiii xuuxEV ~~~~ ′′≡ . /6/ 

The standard errors of the elements in  are therefore the square root of the diago-
nal elements of D 

FEβ̂
divided by N, or with some abuse of notation, 

( )DN N

A
FE

1,ˆ ββ ∼  

The proof is a straightforward application of Theorems 3.5 and 5.3 in White [1984]. 
Note that the time-series properties of { }iu~  or  { }ix~ are not restricted in any way. Among 
other things, serial correlation and time-series heteroskedasticity of any kind are allowed, 
and so are unit roots and unequal spacing. All asymptotic results follow from the fixed 
length of the time-series and the cross-sectional i.i.d. assumption. 

The next few subsections will consider simplified versions of [ ]iiii xuuxV ~~~~ ′′=  under 
restrictive assumptions. 

Cross-sectional homoskedasticity 

Under conditional homoskedasticity in the cross-sectional dimension but no restric-
tion in the time series dimension, we have that [ ] [ ] Ω≡′=′ iiiii uuExuuE | . Since M is 
nonstochastic, [ ] [ ]MxuuMExuuE iiiiii |~|~~ ′=′ , and so  

[ ] [ ] MMxuuEuuE iiiii Ω=′=′≡Ω ~|~~~~~  
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This implies that 

[ ] [ ][ ] [ ]iiiiiiiiiii xxExxuuExExuuxEV ~~~~~|~~~~~~~ Ω′=′′=′′≡ . 

Here, again, no time-series restrictions are used.6 Notice that   

[ ] [ ] [ ]iiiiiiiiiiii MxuMuxExMMuuMMxExuuxE ′′=′′=′′ ~~~~ . 

Using this fact, we can simplify V further to get [ ] [ iiii xxEMxMxE ]V ~~Ω′=Ω′= . This 
result is not used for the present estimator because we naturally want everything to be a 
function of the mean-differenced variables. The result is important in itself nevertheless. 
It means that using the levels error covariance matrix or mean-differenced error covari-
ance matrix are equivalent. 

No serial correlation 

In the absence of serial correlation in the error process { }itu , we have that 
   [ ] 0=isituuE ts ≠∀ , and therefore [ ] TTitiiii xuuE

×
ω=′≡Ω |  a diagonal matrix, with 

elements [ ]i= it xuE |2
itω . Therefore, 

=V [ ]iiii MxuMuxE ′′  = [ ] =






 ′ω=Ω′ ∑
=

T

i
itititii xxExxE

1

~~~~







 ′∑
=

T

i
ititit xxuE

1

2 ~~ . 

We would like to express this in terms of the conditional variance of the mean-
differenced errors, because we estimate the model on mean-differenced data. One can 

show that [ ] [ itititT
T

ititit xxuExxuE ′=′ − ~~~~~ 212 ]   and therefore 








 ′
−

=






 ′= ∑∑
==

T

t
ititit

T

t
ititit xxuE

T
TxxuEV

1

2

1

2 ~~~
1

~~  

The same result is implied by zero serial correlation in the right-hand-side variables, 
that is if [ ] stxxE isit ≠∀=′ 0 .  Let [ ]iiii xuuE |~~~ ′≡Ω   and write 

=V [ ] [ ][ ] [ ]=Ω′=′′=′′ iiiiiiiiiiii xxExxuuExEMxuMuxE ~|~~  








 ′
−

=






 ′=






 ′ω= ∑∑∑
===

T

t
ititit

T

t
ititit

T

t
ititit xxuE

T
TxxuExxE

1

2

1

2

1 1
~~~~~ , 

  
6 V is basically a seemingly unrelated regressions  (SUR) covariance matrix, with T equations and the  constrained to be 

the same. Kiefer [1980] has introduced this estimator in the FE context. 
β
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where we used the fact that [ ] tsxxE isit ≠∀=′ 0  and  , both im-

plied by 

[ ii

T

t
itit xxExxE ′=






 ′∑
=1

]

[ ] 0=′isit xxE . The last equality makes use the fact that [ ] [ ]ii xx′T
T

ii ExxE =′ −1~~ . 
The assumption we use is zero serial correlation in the error process or in (and across) 

the right-hand-side variables. The error process may be heteroskedastic in any dimension. 
This sampling covariance matrix is in fact a 1−T

T -scaled version of the one that is behind 
the original White heteroskedasticity-consistent estimator, applied to the mean-
differenced data. 

Note that it is the error terms or the right-hand-side variables in levels (as opposed to 
mean-differences) that are assumed to be serially uncorrelated. In the fixed T setup we 
focus on, mean-differencing induces serial correlation in the first-differenced errors, be-
cause all itu~ are correlated with itu . Assuming no serial correlation in the mean-

differenced error terms would deliver a similar result without the 1−T
T  factor. We think 

that assumption has no intuitive appeal. The model is set up in levels, while mean-
differencing is only a way to get around the correlation of iα  and . We can already see 
that the unscaled White estimator is going to be inconsistent in the fixed-T framework. 
This is an example of the incidental parameter problem (Lancaster [2000]). The adjust-
ment is analogous to ‘degrees of freedom’ corrections for the 

ix

iα  parameters when the 
model is estimated in levels. 

Homoskedasticity and no serially correlation 

If there is no serial correlation and the conditional variance of  u is the same at every 

t
it

, that is [ ] Tiitit IxuE 22 | σ=Ω=Ω=  we get back the appropriately scaled  i.i.d. OLS es-
timator for V. 

[ ] [ ]iiii xxExxEV ~~~~ 2 ′σ=Ω′=  ,   where   [ ]22
ituE=σ . 

D simplifies in this case to [ ] 12 ~~ −′σ= ii xxED . We would like to have an expression in 
terms of the mean-differenced error term. Analogously to the relationship of the condi-
tional level and mean-differenced variances, we have that [ ] [ ]2

1
22 ~

itT
T

it uEuE −==σ  . 
Homoskedastic errors and serially independent right-hand side variable imply the 

same covariance of . Assume that FEβ̂ [ ] Ω=′ iii xuuE |  with , and 2σ=ϖtt

[ ] tsxxE isit ≠∀=′ 0 . Recall that no serial correlation across and within right-hand side 

variables implies that [ ] [ ]iiT
T xxEE ′= −1

ii xx ′~~ .  Therefore, 

[ ] [ ] [ ]itit

T

t
tt

T

t

T

s
isitstiiii xxExxExxEMxMxEV ′ω=






 ′ω=Ω′=Ω′= ∑∑∑
== = 11 1

~~~
, 
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where the last equality holds because  if 0
1 1

=






 ′∑∑
= =

T

t

T

s
isit xxE ts ≠ . Using 

[ ] 212 σ==ω −
T

T
ittt uE ~~  we get the same result as before. 

The asymptotic variance of the Fixed-Effect estimator is the T
T 1− -scaled asymptotic 

variance of the OLS estimator on the mean-differenced data. Just like before, the zero se-
rial correlation is assumed about or  and not their mean-differenced counterparts. 
And again, conventional OLS standard errors based on the FE residuals are going to be 
inconsistent because of the incidental parameter problem, with the same bias as in the 
White estimator. 

itu itx

Estimation 

We have considered four cases for V. Case /0/ the general, /1/ has cross-sectional 
conditional homoskedasticity but no restriction in the time dimension, /2/ no serial corre-
lation, and /3/ has cross-sectional and time-series conditional homoskedasticity and no 
serial correlation. The four asymptotic covariance matrices are, respectively, 

[ ] [ ] [ ] 11
0

~~~~~~~~ −− ′′′′≡ iiiiiiii xxExuuxExxED    /7/ 

[ ] [ ] [ ] 11
1

~~~~~~ −− ′Ω′≡ iiiiii xxExxExxED   /8/ 

[ ] [ ] 1

1

21
2

~~~~~~~
1

−

=

− ′






 ′′
−

≡ ∑ ii

T

t
itititii xxExxuExxE

T
TD    /9/ 

[ ] 12
3

~~ −′σ≡ ii xxED  .   /10/ 

Let u(  denote the FE residuals. By the analogy principle, the proposed estimators for 
 through  are, respectively, 0D 3D

1

11

1

1
0

~~1~~1~~1ˆ
−

==

−

=







 ′






 ′′






 ′≡ ∑∑∑
N

i
ii

N

i
iiii

N

i
ii xx

N
xuux

N
xx

N
D (( ,  where  /11/ 

FEiii xyu β−≡ ˆ~~(  ,    /12/ 

1

11

1

1
1

~~1~~1~~1ˆ
−

==

−

=







 ′







Ω′







 ′≡ ∑∑∑
N

i
ii

N

i
ii

N

i
ii xx

N
xx

N
xx

N
D

(
,  where    /13/ 

i

N

i
iuu

N
′≡Ω ∑

=

(((

1

1   ,     /14/ 
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1

11

2
1

1
2

~~1~~1~~1
1

ˆ
−

==

−

=







 ′






 ′






 ′
−

≡ ∑∑∑
N

i
ii

N

i
ititit

N

i
ii xx

N
xxu

N
xx

NT
TD ( ,    /15/ 

1

1

2
3

~~1ˆˆ
−

=







 ′σ≡ ∑
N

i
ii xx

N
D ,  where /16/ 

( ) ∑∑
= =−

=σ
N

i

T

t
itu

TN 1 1

22

1
1ˆ ( .   /17/ 

Under our cross-sectional i.i.d. assumption it is straightforward to show that the  

are consistent for the corresponding (j = 0,1,2,3) if T is fixed and 
jD̂

jD ∞→N . The proofs 
are straightforward application of Theorem 5.3 (v) in White [1984]. One should note that 
the estimators don't correct for degrees of freedom decreased by the dimension of  ix~ . 
That is only for keeping things as simple as possible. Not surprisingly, the simulation re-
sults presented in the next section suggest that such corrections would slightly improve 
upon the finite-sample bias of the consistent estimators. 

0D̂  is known as the ‘clustered’ covariance estimator, and was introduced by Arellano 

[1987]. It is always consistent in our setup. , introduced by Kiefer [1980], makes use 

of the covariance matrix of the FE residuals, 
1D̂

Ω
(

. It is consistent under any time-series 
behaviour as long as the error term is homoskedastic in the cross-sectional dimension. 

 is the original heteroskedasticity-consistent estimator of White [1980] scaled by 2D̂ 1−T
T . 

It is consistent if the error term or the right-hand-side variables are serially uncorrelated. 
 is the scaled version of the homoskedasticity-consistent OLS estimator. It is the con-

ventional sampling covariance estimator of β , calculated as the default by all software 
packages. It is consistent only under cross-sectional and time-series homoskedasticity 
and if either the error term or the right-hand-side variables are serially uncorrelated and 
have the same variance. 

3D̂

FE
ˆ

FINITE-SAMPLE PROPERTIES 

In this section Monte Carlo simulation results are presented. To keep things simple, the 
analysis was restricted to a one-dimensional x variable. The data generating process in-
volved the possibility of serial correlation in both  and . In particular, stationary 
AR(1) processes were considered with autoregressive parameters 0, 0.1, 0.3, 0.5, 0.7, and 
0.9 for each process (all 36 combinations were analyzed). Two separate sets were exam-
ined. In one, u  was homoskedastic in the cross-sectional dimension, in the other it was het-
eroskedastic conditional on x

itx itu

. The two data generating processes were the following. 

                    ( ) itxittixit xvxx ,1 +ρ= − ∼ ( )1,0N ,       DGP /1/ 

( ) uittiit vuu +ρ= −1 ,           itu ∼ ( )1,0N  
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Same as DGP /1/, plus 

             itituit h ω=v               itω ∼ ( )1,0Niid   DGP /2/ 

5.0, 10
2

10 ==+= aaxaah itit . 

10,000 Monte Carlo simulations were conducted for each of the 362× parameter set-
tings. I have estimated the sampling distribution of the  and compared its standard 
deviation to the mean of the 10,000 estimated standard error estimates 

(

FEβ̂

∑
=

=
M

m
mjMj SESE

1

1 ,    ). These means were then used to calculate the relative 

bias 

3,2,1,0=j















β

β−

)ˆ(

)ˆ(

SE

SEj

std

stdSE

jSE

. In addition to the relative bias, I also present the standard devia-

tion of the . Several combinations of ( )TN ,  were considered. The ( )10,500  case es-
tablishes large-sample properties while the ( )10,50  case looks at what happens in rela-
tively small N samples. The  case illustrates what happens when in rela-
tively small samples, and the  case is an illustration of what happens in a small-
sample . Finally, a  example illustrates extreme small sample behaviour. 
The results are shown in Tables 1 and 2. 

( 50,50
( ,10

( 10,10

)
)

TN =
50
)TN <

 Table 1.1 

N = 500,  T = 10. Homoskedastic errors 

 xρ  

 0.0 0.3 0.5 0.9 uρ  

 bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.01 0.03 0.00 0.04 –0.01 0.04 –0.01 0.04 
 SE1 –0.01 0.01 0.00 0.02 –0.01 0.02 0.00 0.03 
 SE2 –0.02 0.02 0.00 0.02 0.00 0.02 0.00 0.03 
 SE3 –0.01 0.01 0.00 0.02 –0.01 0.02 0.00 0.02 
          

0.3 SE0 0.00 0.03 0.00 0.04 0.00 0.04 0.00 0.04 
 SE1 0.00 0.02 0.01 0.02 0.00 0.02 0.00 0.03 
 SE2 0.00 0.02 –0.06 0.02 –0.10 0.02 –0.16 0.03 
 SE3 0.00 0.02 –0.06 0.02 –0.10 0.02 –0.17 0.02 
          

0.5 SE0 0.01 0.04 –0.01 0.04 0.01 0.04 –0.01 0.05 
 SE1 0.01 0.02 –0.01 0.02 0.01 0.02 –0.01 0.03 
 SE2 0.01 0.02 –0.11 0.02 –0.16 0.02 –0.26 0.03 
 SE3 0.01 0.02 –0.11 0.02 –0.16 0.02 –0.27 0.02 
          

0.9 SE0 0.00 0.049 –0.01 0.049 0.00 0.049 0.00 0.051 
SE1 0.00 0.026 –0.01 0.027 0.00 0.027 0.00 0.030 
SE2 0.00 0.026 –0.17 0.027 –0.25 0.028 –0.39 0.034 
SE3 0.00 0.021 –0.17 0.021 –0.25 0.022 –0.42 0.026 
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Tables 1. contain Relative Bias (‘bias’: mean estimated SE over the standard devia-
tion of the simulated distribution of βFE) and Coefficient of Variation (‘CV’: standard er-
ror of the estimated SE distribution over its mean) of the four different SE estimators. As 
of Homoskedastic errors: In each cell, the first row corresponds to the general estimator 
(SE0), the second row to the Omega-estimator (SE1 consistent under cross-sectional ho-
moskedasticity), the third row to the scaled version of the original White estimator (SE2, 
consistent under no serial correlation), and the fourth row to the scaled version of con-
ventional estimator (SE3 consistent under homoskedasticity and no serial correlation). 
Results are from 10,000 Monte Carlo experiments. 
 Table 1.2 

N = 50,  T = 10. Homoskedastic errors 

xρ  
0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.02 0.12 –0.02 0.12 –0.02 0.12 –0.04 0.14 
 SE1 0.00 0.05 0.00 0.05 0.00 0.06 –0.02 0.08 
 SE2 0.00 0.07 0.00 0.07 –0.01 0.07 –0.02 0.08 
 SE3 0.00 0.05 0.00 0.05 0.00 0.05 –0.01 0.07           

0.3 SE0 –0.02 0.12 –0.02 0.12 –0.02 0.12 –0.01 0.14 
 SE1 0.00 0.05 0.00 0.06 0.00 0.06 0.01 0.08 
 SE2 –0.01 0.07 –0.07 0.07 –0.11 0.07 –0.16 0.08 
 SE3 0.00 0.05 –0.06 0.05 –0.10 0.05 –0.16 0.07           

0.5 SE0 –0.01 0.12 –0.03 0.13 –0.02 0.13 –0.04 0.15 
 SE1 0.01 0.06 –0.01 0.06 0.00 0.07 –0.02 0.09 
 SE2 0.00 0.07 –0.12 0.07 –0.17 0.07 –0.27 0.09 
 SE3 0.01 0.05 –0.11 0.05 –0.17 0.06 –0.27 0.07           

0.9 SE0 –0.02 0.141 –0.02 0.145 0.00 0.147 –0.04 0.159 
 SE1 0.00 0.085 0.00 0.083 0.02 0.085 –0.02 0.097 

SE2 0.00 0.082 –0.17 0.086 –0.24 0.088 –0.40 0.107 
SE3 0.00 0.066 –0.17 0.067 –0.25 0.070 –0.43 0.082 

 Table 1.3 

N = 50,  T = 50. Homoskedastic errors 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.02 0.11 0.00 0.10 –0.01 0.11 –0.01 0.12 
 SE1 –0.01 0.02 0.01 0.02 0.00 0.03 0.00 0.06 
 SE2 –0.01 0.03 0.01 0.03 0.00 0.03 0.01 0.05 
 SE3 –0.01 0.02 0.01 0.02 0.00 0.02 0.01 0.04           

0.3 SE0 –0.01 0.11 0.00 0.11 0.00 0.11 –0.02 0.12 
 SE1 0.01 0.03 0.01 0.03 0.01 0.03 –0.01 0.06 
 SE2 0.01 0.03 –0.07 0.03 –0.13 0.03 –0.23 0.05 
 SE3 0.01 0.02 –0.07 0.02 –0.12 0.02 –0.23 0.04           

0.5 SE0 –0.02 0.11 –0.01 0.11 –0.02 0.11 –0.01 0.12 
 SE1 –0.01 0.03 0.00 0.03 –0.01 0.03 0.00 0.06 
 SE2 –0.01 0.03 –0.13 0.03 –0.22 0.04 –0.36 0.05 
 SE3 –0.01 0.03 –0.13 0.03 –0.22 0.02 –0.36 0.04           

0.9 SE0 –0.02 0.120 –0.01 0.123 –0.02 0.123 –0.03 0.135 
 SE1 –0.01 0.059 0.00 0.059 0.00 0.059 –0.01 0.071 
 SE2 0.00 0.048 –0.23 0.047 –0.37 0.047 –0.63 0.065 
 SE3 0.00 0.041 –0.23 0.041 –0.37 0.040 –0.64 0.054 
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 Table 1.4 

N = 10,  T = 50. Homoskedastic errors 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.08 0.24 –0.08 0.25 –0.07 0.25 –0.09 0.27 
 SE1 –0.01 0.08 –0.01 0.09 0.00 0.09 –0.02 0.14 
 SE2 –0.01 0.06 –0.01 0.06 0.00 0.07 0.00 0.10 
 SE3 0.00 0.04 0.00 0.05 0.01 0.05 0.00 0.09 
          

0.3 SE0 –0.08 0.25 –0.09 0.25 –0.08 0.25 –0.09 0.28 
 SE1 –0.02 0.09 –0.01 0.09 –0.02 0.09 –0.02 0.14 
 SE2 –0.01 0.07 –0.09 0.07 –0.14 0.07 –0.23 0.10 
 SE3 –0.01 0.05 –0.09 0.05 –0.14 0.05 –0.23 0.09 
          

0.5 SE0 –0.08 0.25 –0.08 0.25 –0.08 0.25 –0.10 0.28 
 SE1 –0.01 0.09 –0.01 0.09 –0.01 0.10 –0.02 0.14 
 SE2 –0.01 0.07 –0.14 0.07 –0.22 0.07 –0.37 0.11 
 SE3 0.00 0.05 –0.13 0.05 –0.22 0.06 –0.37 0.10 
          

0.9 SE0 –0.10 0.275 –0.09 0.273 –0.09 0.273 –0.11 0.296 
 SE1 –0.02 0.141 –0.02 0.143 –0.02 0.145 –0.03 0.167 
 SE2 –0.02 0.104 –0.24 0.104 –0.37 0.108 –0.64 0.147 
 SE3 –0.01 0.092 –0.23 0.094 –0.37 0.096 –0.63 0.124 

 Table 1.5  

N = 10,  T = 10. Homoskedastic errors 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 
  

0.0 SE0 –0.10 0.27 –0.09 0.27 –0.11 0.28 –0.13 0.31 
 SE1 –0.03 0.13 –0.02 0.13 –0.02 0.15 –0.04 0.20 
 SE2 –0.03 0.14 –0.03 0.15 –0.02 0.15 –0.04 0.18 
 SE3 –0.01 0.11 –0.01 0.11 –0.01 0.12 –0.02 0.15 
          

0.3 SE0 –0.08 0.27 –0.11 0.27 –0.10 0.28 –0.13 0.31 
 SE1 –0.01 0.14 –0.03 0.14 –0.03 0.15 –0.04 0.19 
 SE2 –0.02 0.14 –0.10 0.15 –0.13 0.15 –0.19 0.19 
 SE3 0.00 0.11 –0.08 0.11 –0.11 0.12 –0.17 0.15 
          

0.5 SE0 –0.10 0.27 –0.09 0.28 –0.11 0.29 –0.13 0.32 
 SE1 –0.02 0.14 –0.01 0.15 –0.03 0.16 –0.04 0.20 
 SE2 –0.03 0.15 –0.13 0.16 –0.18 0.16 –0.27 0.19 
 SE3 –0.01 0.12 –0.10 0.12 –0.17 0.13 –0.26 0.16 
          

0.9 SE0 –0.09 0.311 –0.11 0.310 –0.11 0.314 –0.14 0.331 
 SE1 –0.02 0.193 –0.04 0.193 –0.03 0.195 –0.05 0.217 
 SE2 –0.02 0.180 –0.19 0.185 –0.28 0.188 –0.42 0.222 
 SE3 0.00 0.150 –0.18 0.154 –0.26 0.155 –0.42 0.185 

 
Tables 2. contain Relative Bias (‘bias’: mean estimated SE over the standard devia-

tion of the simulated distribution of βFE) and Coefficient of Variation (‘CV’: standard er-
ror of the estimated SE distribution over its mean) of the four different SE estimators, and 
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Conditional heteroskedasticity in the cross-sectional dimension. In each cell, the first row 
corresponds to the general estimator (SE0), the second row to the Omega-estimator (SE1 
consistent under cross-sectional homoskedasticity), the third row to the scaled version of 
the original White estimator (SE2, consistent under no serial correlation), and the fourth 
row to the scaled version of conventional estimator (SE3 consistent under homoskedastic-
ity and no serial correlation). Results are from 10,000 Monte Carlo experiments. 

 Table 2.1  

N = 500,  T = 10. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.01 0.04 0.01 0.04 0.00 0.05 –0.02 0.05 
 SE1 –0.28 0.01 –0.25 0.01 –0.24 0.02 –0.13 0.03 
 SE2 –0.03 0.02 –0.01 0.02 –0.02 0.02 –0.02 0.02 
 SE3 –0.28 0.01 –0.25 0.01 –0.24 0.02 –0.13 0.02 
          

0.3 SE0 0.00 0.04 0.00 0.05 0.00 0.05 –0.01 0.06 
 SE1 –0.26 0.01 –0.24 0.02 –0.23 0.02 –0.12 0.03 
 SE2 –0.02 0.02 –0.08 0.02 –0.12 0.02 –0.18 0.02 
 SE3 –0.26 0.01 –0.29 0.02 –0.31 0.02 –0.27 0.02 
          

0.5 SE0 0.00 0.05 0.00 0.04 0.00 0.05 –0.01 0.06 
 SE1 –0.23 0.01 –0.22 0.02 –0.20 0.02 –0.11 0.03 
 SE2 –0.02 0.02 –0.12 0.02 –0.18 0.02 –0.27 0.03 
 SE3 –0.23 0.02 –0.31 0.02 –0.34 0.02 –0.35 0.02 
          

0.9 SE0 –0.02 0.05 –0.02 0.05 0.00 0.06 0.00 0.06 
 SE1 –0.14 0.02 –0.12 0.03 –0.10 0.02 –0.05 0.03 
 SE2 –0.02 0.02 –0.17 0.02 –0.25 0.03 –0.38 0.03 
 SE3 –0.14 0.02 –0.26 0.02 –0.34 0.02 –0.45 0.03 

 Table 2.2 

N = 50,  T = 10. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3  0.5  0.9  uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.02 0.13 –0.03 0.14 –0.03 0.14 –0.03 0.16 
 SE1 –0.27 0.05 –0.26 0.05 –0.24 0.06 –0.11 0.09 
 SE2 –0.03 0.09 –0.04 0.09 –0.03 0.09 –0.01 0.10 
 SE3 –0.27 0.04 –0.26 0.05 –0.24 0.05 –0.11 0.07 
          

0.3 SE0 –0.02 0.14 –0.02 0.14 –0.02 0.15 –0.03 0.16 
 SE1 –0.25 0.05 –0.24 0.06 –0.22 0.06 –0.12 0.09 
 SE2 –0.03 0.09 –0.09 0.09 –0.12 0.09 –0.18 0.10 
 SE3 –0.26 0.05 –0.29 0.05 –0.31 0.05 –0.26 0.07 
          

0.5 SE0 –0.02 0.14 –0.03 0.14 –0.02 0.15 –0.03 0.17 
 SE1 –0.23 0.06 –0.22 0.06 –0.20 0.07 –0.10 0.10 
 SE2 –0.03 0.09 –0.13 0.09 –0.18 0.09 –0.26 0.10 
 SE3 –0.23 0.05 –0.31 0.05 –0.34 0.06 –0.34 0.08 
          

0.9 SE0 –0.02 0.15 –0.03 0.16 –0.03 0.17 –0.05 0.19 
 SE1 –0.12 0.08 –0.11 0.08 –0.10 0.09 –0.07 0.11 
 SE2 –0.01 0.09 –0.17 0.09 –0.26 0.10 –0.40 0.12 
 SE3 –0.12 0.07 –0.26 0.07 –0.34 0.07 –0.46 0.09 
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 Table 2.3 

 N = 50,  T = 50. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.03 0.11 –0.01 0.11 –0.02 0.11 –0.03 0.13 
 SE1 –0.29 0.02 –0.28 0.02 –0.28 0.03 –0.23 0.05 
 SE2 –0.02 0.04 0.00 0.04 –0.01 0.04 –0.01 0.05 
 SE3 –0.30 0.02 –0.28 0.02 –0.28 0.02 –0.23 0.03 
          

0.3 SE0 –0.01 0.11 –0.01 0.11 –0.01 0.11 –0.03 0.14 
 SE1 –0.27 0.02 –0.26 0.03 –0.26 0.03 –0.23 0.05 
 SE2 0.00 0.04 –0.08 0.04 –0.13 0.04 –0.24 0.05 
 SE3 –0.27 0.02 –0.32 0.02 –0.36 0.02 –0.41 0.03 
          

0.5 SE0 –0.01 0.11 –0.02 0.11 –0.03 0.12 –0.03 0.14 
 SE1 –0.23 0.03 –0.24 0.03 –0.24 0.03 –0.22 0.06 
 SE2 0.00 0.04 –0.14 0.04 –0.23 0.05 –0.38 0.05 
 SE3 –0.24 0.02 –0.34 0.03 –0.41 0.02 –0.51 0.04 
          

0.9 SE0 –0.02 0.13 –0.02 0.13 –0.02 0.13 –0.03 0.16 
 SE1 –0.09 0.06 –0.09 0.06 –0.10 0.06 –0.13 0.07 
 SE2 –0.01 0.05 –0.23 0.05 –0.36 0.05 –0.63 0.07 
 SE3 –0.09 0.04 –0.30 0.04 –0.43 0.04 –0.68 0.05 

 Table 2.4 

 N = 10,  T = 50. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.09 0.25 –0.09 0.25 –0.08 0.26 –0.12 0.29 
 SE1 –0.27 0.09 –0.27 0.09 –0.26 0.09 –0.23 0.14 
 SE2 –0.02 0.09 –0.02 0.09 –0.01 0.09 –0.02 0.10 
 SE3 –0.29 0.04 –0.29 0.04 –0.28 0.05 –0.23 0.08 
          

0.3 SE0 –0.08 0.25 –0.09 0.26 –0.09 0.26 –0.10 0.29 
 SE1 –0.25 0.09 –0.25 0.09 –0.25 0.10 –0.21 0.14 
 SE2 –0.02 0.09 –0.10 0.09 –0.15 0.09 –0.23 0.10 
 SE3 –0.27 0.04 –0.33 0.04 –0.37 0.05 –0.39 0.08 
          

0.5 SE0 –0.07 0.26 –0.09 0.26 –0.09 0.26 –0.12 0.30 
 SE1 –0.22 0.09 –0.22 0.10 –0.23 0.10 –0.21 0.15 
 SE2 0.00 0.09 –0.14 0.09 –0.23 0.09 –0.38 0.11 
 SE3 –0.23 0.05 –0.34 0.05 –0.41 0.05 –0.50 0.08 
          

0.9 SE0 –0.10 0.28 –0.10 0.28 –0.11 0.29 –0.12 0.33 
 SE1 –0.11 0.14 –0.10 0.14 –0.11 0.15 –0.13 0.18 
 SE2 –0.02 0.11 –0.24 0.11 –0.37 0.11 –0.63 0.15 
 SE3 –0.10 0.09 –0.30 0.09 –0.43 0.09 –0.67 0.12 



GÁBOR KÉZDI 110

 Table 2.5 

 N = 10,  T = 10. Cross-sectional conditional heteroskedasticity 

xρ  

0.0 0.3 0.5 0.9 uρ  Estimator 

bias CV bias CV bias CV bias CV 

0.0 SE0 –0.11  0.29 –0.12 0.29 –0.13 0.30 –0.14 0.33 
 SE1 –0.26 0.13 –0.25 0.14 –0.24 0.14 –0.14 0.21 
 SE2 –0.07 0.19 –0.07 0.19 –0.07 0.18 –0.05 0.20 
 SE3 –0.27 0.10 –0.26 0.10 –0.25 0.11 –0.12 0.17 
          

0.3 SE0 –0.11 0.29 –0.13 0.30 –0.13 0.30 –0.14 0.34 
 SE1 –0.24 0.13 –0.25 0.14 –0.23 0.15 –0.13 0.21 
 SE2 –0.06 0.18 –0.14 0.18 –0.16 0.18 –0.20 0.21 
 SE3 –0.26 0.10 –0.30 0.11 –0.31 0.11 –0.25 0.17 
          

0.5 SE0 –0.12 0.30 –0.12 0.30 –0.12 0.31 –0.14 0.34 
 SE1 –0.24 0.14 –0.22 0.15 –0.20 0.16 –0.13 0.22 
 SE2 –0.07 0.18 –0.16 0.19 –0.21 0.19 –0.29 0.21 
 SE3 –0.24 0.11 –0.30 0.11 –0.33 0.12 –0.33 0.17 
          

0.9 SE0 –0.12 0.32 –0.13 0.33 –0.13 0.34 –0.16 0.36 
 SE1 –0.14 0.19 –0.13 0.19 –0.13 0.20 –0.11 0.24 
 SE2 –0.05 0.19 –0.20 0.20 –0.28 0.20 –0.43 0.24 
 SE3 –0.13 0.14 –0.26 0.15 –0.34 0.15 –0.45 0.20 

 
In order to assess the results, note that in the first set (Tables 1),   and  are 

always consistent for the true SE
0SE
=

1SE
, and and  are consistent if 2SE 3SE 0ρρ xu  (either of 

the two is zero). In the second set (Tables 2),  is always consistent for the true SE0SE

3SE
, 

2SE  is consistent if , but  and   are never consistent because of cross-
sectional heteroskedasticity. 

0=ρρ xu 1SE

Tables 1.1 and 2.1 present the large-sample results. Bias of the consistent estimators 
is virtually zero. The bias of the inconsistent estimators here increases as and  in-
crease. Unbiasedness of and ,  when they are consistent, indicates that the un-
scaled White and OLS estimators are biased also in small samples. In the heteroskedastic 
setup, the bias of  and  is dominated by heteroskedasticity in the small- ρ  setups, 
and serial correlation takes over as 

uρ xρ

2SE

SE

3SE

u

1SE 3

ρ and xρ  increase. The variance of the estimators 
behave the predictable way, with the more restrictive ones having smaller variation. 
These differences, however, are very small for practical purposes. 

Smaller- samples (Tables 1.2 and 2.2) basically deliver the large-sample results in 
terms of the bias.  shows a small-sample bias that is larger than other consistent es-
timators but it is still negligible. Differences in the variance are magnified, as expected, 
but they are not extremely large either. Both the small-sample bias and the variance of 
the consistent estimators increase as 

N
0SE

uρ and xρ  increase. This reflects the fact that higher 
serial correlation decreases the variation in the variables if the overall error and RHS 
variance is fixed, as were throughout the simulation. 

Bias due to serial correlation is greater as T increases. Small-sample bias of  
stays small in the  setup but becomes a significant negative 8-16 percent when in 

0SE
( 50,50 )
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the  setups. The results indicate that it is the overall sample size, and especially N10=N

0SE

, 
the size of the cross-sectional sample that determines the small-sample bias. Reluctance 
of using the cluster estimator   when T0SE

( 50,50
 

)
is large is unjustified. The variance disadvan-

tage of  is larger in the  case than the ( )10,50
SE
 case, as expected, but the dif-

ferences remain modest. The small-sample properties of  (the more restrictive serial 
correlation consistent estimator) are significantly better when it is consistent. Its small 
sample bias stays close to zero even in the 

1

( )
,10

10,10  sample, and its standard deviation is 
below 25 percent larger than that of  when 3SE 10== TN

1SE

3SE

3D̂

 and 50 percent when 
.  50N

0D̂

1D̂

1 D

,10 == T

1SE

0SE

( 10,10

1D̂

3D̂

D̂

[ iiii xuuxEV ~~~~ ′′=

∑
=

N

iN 1

1 ′′ iiii xuux ~~ ((≡V0̂

The good small-sample behaviour may seem somewhat surprising. But they may 
simply reflect that the standard error estimators take an average over all observa-
tions. In this light, even the  sample is not small: it consists of 100 observations 
altogether. 

NT
)

The results have the following practical implications. In large samples  is just as 
good for applied work as the restricted estimators even when the latter are also consis-
tent. In smaller samples there is some advantage  (the Omega-estimator) if that is 
consistent for the true SE

0SE

. The conventional estimator  has no substantial advantage 
over , other than computational simplicity. The simulation results suggest that prop-
erties of the estimators don't depend much on the relative size of T and N but rather on 
the total sample size NT and especially N itself. At the same time, an increasing T in-
creases the bias due to serial correlation. Cautioning against using the ‘clustered’ estima-
tor  when the time-series is long is therefore not simply unnecessary but quite mis-
leading. 

A DIRECT TEST FOR HOMOSKEDASTICITY  
AND NO SERIAL CORRELATION 

In this section I propose a direct test for the restrictive assumptions under which the 
alternative (less robust) estimators are consistent.  is easier to compute and has the 

best properties if consistent.  performs significantly better in terms of variance than 

 when both are consistent, especially in smaller samples. Moreover, the properties of 

 match closely those of  if both are consistent. If we can test for the restrictions 

that make ,  or , consistent we can always choose the best consistent estimator. 
In this section I develop such a test. 

2
ˆ

3D̂

Let me introduce the following notation. Recall that the alternative standard error es-
timators differ only in how they estimate ]. The assumptions behind the 
restricted estimators can therefore be tested by comparing the corresponding V estimates 
to one that is always consistent. Define 

    /18/ 
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0V̂

2V̂

 is always consistent for V.  is consistent under cross-sectional homoskedastic-

ity.  is consistent under no serial correlation in the (levels) error or the (levels) right-

hand-side variables.  is consistent if both 

1V̂

3V̂ 1̂V and 2̂V  are consistent and time-series ho-
moskedasticity also holds. A direct way to test whether the more restrictive assumptions 
hold is to check whether V ,VV=1 V=2 , or VV =3 . In order to formulate the linear hy-
potheses, let's use the vech operator that stacks columnwise the diagonal and sub-
diagonal elements of a symmetric matrix.7 

≡jv  vech ( )jV  /22/ 

≡jv̂  vech ( )jV̂ ,        3,2,1,0=j     /23/ 

The hypotheses are 

3,2,1,0: 00 ==− jvvH j  

3,2,1,0: 01 =≠− jvvH j . 

The test I propose is analogous to White's [1980] test for heteroskedasticity. Since  
is always consistent and the   are consistent only under the appropriate , their dis-
tance is an intuitive test statistic. If they are close enough, the restrictions probably hold. 
If they are very far, they probably do not hold. 

0v̂

jv̂ 0H

 
Proposition 2. Suppose that { } Niii xy ∈,  is i.i.d. with finite fourth moments. Consider 

the Fixed-Effect (FE) panel model (1-2) and assume that [ ]ii xxE ~~′  and ∑
=

′≡
N

i
iiNxx xxS

1

1 ~~~  

are positive definite. The test-statistic  defined below using /18-23/ are distributed chi-

squared under .  
jh

0H
  

7 Suppose that 3=K  and A is symmetric: { }ija=A . Then, . See Magnus and 

Neudecker (1988), e.g., for more discussion. 

( ) ( )′= 333222312111 aaaaaavech ,,,,,A
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Their asymptotic power is 1. That is, 
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The proof is straightforward provided the simplifications to V derived earlier and the 
consistency of the estimators  for the appropriate V . It is therefore skipped here and 
is available upon request. 

jV̂ j

Finite-sample properties 

Tables 3 and 4 report simulated rejection rates for the three tests in the data generat-
ing processes identical to Tables 1 and 2, respectively, based on 10,000 Monte Carlo tri-
als. Results for the ( )10,500 ( )10,50  setups are presented only but all setups from 
Tables 1-2 were examined. The unpublished results indicate that given N, the size does 
not change but the power increases with T, and the test loses almost all of its power on 
extremely small-N samples. 

 and 

Tables 3. have rejection rates of h1 (H0: V1 = V0), h2 (H0: V2 = V0) and h3 (H0: V3 = V0). 
Nominal size=0.05. As of homoskedastic errors: V1 and V0 are asymptotically equivalent 
always; V2 and V0, and V3 and V0 are asymptotically equivalent if xρ = 0, or . Re-
sults are from 10,000 Monte Carlo experiments. 

0=ρu



GÁBOR KÉZDI 114

Table 3.1 

N = 500,  T = 10. Homoskedastic errors 

 xρ  
uρ  

 0.0 0.3 0.5 0.9 
      

0.0 1h  0.05 0.05 0.04 0.04 

 2h  0.04 0.06 0.04 0.06 

 3h  0.05 0.05 0.05 0.05 
      

0.3 1h  0.04 0.04 0.04 0.04 

 2h  0.05 0.56 0.92 1.00 

 3h  0.05 0.36 0.79 0.99 
      

0.5 1h  0.04 0.04 0.04 0.04 

 2h  0.06 0.90 1.00 1.00 

 3h  0.05 0.79 0.99 1.00 
      

0.9 1h  0.04 0.04 0.04 0.03 

 2h  0.06 1.00 1.00 1.00 

 3h  0.05 0.99 1.00 1.00 

Table 3.2 

N = 50,  T = 10. Homoskedastic errors 

 xρ  uρ  

 0.0 0.3 0.5 0.9 
  

0.0 1h  0.09 0.08 0.08 0.08 

 2h  0.08 0.08 0.08 0.09 

 3h  0.09 0.09 0.09 0.10 
      

0.3 1h  0.09 0.08 0.08 0.07 

 2h  0.08 0.05 0.07 0.14 

 3h  0.09 0.04 0.04 0.06 
      

0.5 1h  0.08 0.08 0.08 0.07 

 2h  0.08 0.06 0.18 0.46 

 3h  0.09 0.04 0.09 0.26 
      

0.9 1h  0.08 0.07 0.07 0.06 

 2h  0.09 0.14 0.44 0.86 

 3h  0.10 0.08 0.29 0.74 

  
Table 4.1.  

N = 500,  T = 10 
Cross-sectional conditional heteroskedasticity 

 xρ  
uρ  

 0.0 0.3 0.5 0.9 
      

0.0 1h  1.00 1.00 1.00 0.77 
 2h  0.10 0.07 0.06 0.06 

 3h  1.00 1.00 1.00 0.71 
      

0.3 1h  1.00 1.00 1.00 0.53 
 2h  0.08 0.73 0.96 0.99 

 3h  1.00 1.00 1.00 1.00 
      

0.5 1h  1.00 1.00 1.00 0.37 
 2h  0.05 0.96 1.00 1.00 

 3h  1.00 1.00 1.00 1.00 
      

0.9 1h  0.60 0.48 0.34 0.04 
 2h  0.04 0.99 1.00 1.00 

 3h  0.58 1.00 1.00 1.00 

Table 4.2.  

N = 50,  T = 10  
Cross-sectional conditional heteroskedasticity 

 xρ  
uρ  

 0.0 0.3 0.5 0.9 
      

0.0 1h  0.36 0.30 0.19 0.03 
 2h  0.05 0.05 0.05 0.08 

 3h  0.36 0.29 0.18 0.03 
      

0.3 1h  0.28 0.21 0.12 0.03 
 2h  0.05 0.05 0.07 0.11 

 3h  0.28 0.39 0.38 0.15 
      

0.5 1h  0.19 0.14 0.08 0.03 
 2h  0.06 0.07 0.18 0.32 

 3h  0.20 0.40 0.48 0.36 
      

0.9 1h  0.03 0.03 0.03 0.04 
 2h  0.08 0.11 0.35 0.74 

 3h  0.04 0.16 0.36 0.65 
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The results in general reflect the finite-sample properties of the estimators. The tests 
deliver their asymptotic properties in the 10,500 == TN setup. The notable exceptions 
are and  under conditional homoskedasticity and very weak serial correlation 
(

2h
.0

3h
,3.0,3 <ρx<ρ  Table 3.1), and  under conditional heteroskedasticity and very 

strong serial correlation (Table 4.1). The former are quite natural while the latter reflects 
that strong serial correlation dominates heteroskedasticity in the conditional variance 
(Table 2.1). 

u 1h

Tables 4. have rejection rates of h1 (H0: V1 = V0), h2 (H0: V2 = V0) and h3 (H0: V3 = V0). 
Nominal size=0.05. As of Conditional cross-sectional heteroskedasticity in the errors: V1 
and V0, and V3 and V0 are never asymptotically equivalent; V2 and V0 are asymptotically 
equivalent if = or . Results are from 10,000 Monte Carlo experiments. xρ 0=ρu

The size is about right in moderate size samples. It is slightly biased upward which 
makes the test a little too conservative (the actual size varies between 0.06 and 0.09 com-
pared to a nominal size of 0.05). The power varies considerably with the alternatives. In 
the homoskedastic setup, the power, quite naturally, is a positive function of the serial 
correlation in u and x. The heteroskedastic setup yields the same result except against 1V , 
the heteroskedasticity-inconsistent but serial correlation consistent estimator. 

* 

The paper examined linear FE models with short time series within individual units. 
Serial correlation in the error process and the right-hand-side variables was shown to 
induce severe bias in the conventional standard error estimates. At the same time, the 
paper has shown that well-known robust (‘clustered’) estimator applied to the mean-
differenced data is not only consistent but also behaves well in finite samples. Applied 
researchers should, therefore, routinely estimate the robust estimator in moderate-sized 
and large samples, the same way they already routinely estimate the heteroskedasticity-
consistent estimator in cross-sectional models. The robust estimator does not get biased 
or significantly more disperse as the time-series dimension increases. At the same time, 
however, the serial correlation bias of the inconsistent estimators increases with the 
time-series dimension. Therefore, contrary to the intuition of many applied researchers, 
the advantages of the robust estimator increase as the time-series get longer. It is the 
cross-sectional size of the sample that primarily affects the finite-sample behaviour of 
the estimator. 

In small samples and under cross-sectional homoskedasticity, there is some advan-
tage of using the alternative serial correlation consistent estimator, the ‘Omega’-
estimator. The conventional FE standard error estimator (the scaled version of the con-
ventional OLS estimator on the mean-differenced data) has no significant advantage 
over the Omega-estimator even if both are consistent. In small samples, therefore, the 
Omega-estimator should be used unless there is evidence for cross-sectional heteroske-
dasticity. The paper has also introduced a simple direct test for the assumptions under 
which the restrictive estimators are consistent. The test delivers the appropriate size 
properties. Its power is quite small in small samples but good enough to detect strong 
serial correlation. 
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