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The paper deals with the exact inference on 
poverty indicators included in a predictive logistic 
regression model as predictor variables. Based on a 
multiple stratification applied in a household survey, 
small size or unbalanced subgroups are likely to occur 
in practice with regard to the number of poor and 
hence the standard unconditional maximum likelihood 
estimation of a regression parameter may fail to exist. 
Focus is brought on exact inference which is still 
possible to make even at this case. The paper gives a 
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estimate does not exist or the large sample asymptotic 
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Logistic regression is a straightforward method to evaluate the risk of being 
poor based on an appropriate poverty line.1 This paper focuses mainly on the 
problem of the relevancy of poverty indicators when the so-called p-value criterion is 
applied to select a set of predictor variables. Since several types of homogenous 
households can be defined by their socio-economic and demographic characteristics, 
small size or unbalanced subgroups are likely to be formed for measuring poverty in 
a stratified survey. Calculating p-values for inference accurately as possible is clearly 
a key stage of the model building process but the standard unconditional maximum 
likelihood approach exhibits appealing asymptotic properties only in the large 
sample case. Otherwise, considering small or unbalanced samples the exact approach 
of inference gives the correct p-values and confidence intervals. The main purpose of 
this paper is to give a brief guide to apply exact methods and to interpret their results 
correctly. 

1. The predictive model 

Consider a set of independent binary random variables, ( )1 2 nY ,Y ,...,Y=Y  where 
1  2   i , , ...., n=  stands for an individual household. The response variable iY  takes the 

value of 1 in the case of households falling below the poverty line and 0 otherwise. 
Corresponding to each response variable, iY , there is a ( )1p×  covariate vector 

( )1 2i i i ipx ,x ,...,x '=x  of predictor variables. Let πx  denote the conditional 

probability ( )1Pr Y = x  i.e. the probability that 1Y =  conditioned on the levels of 

the covariates. Using the so-called odds-measure defined as ( )π 1 πx x/ −  the 
conditional probability of the event „1” can be written as follows: 

                                            
( )
( )

π / 1 π odds
π = =

1+π / 1 π 1 odds
x x x

x
x x x

−

− +
. /1/ 

When πx  exceeds a critical value of C the prediction is 1Ŷ =  otherwise the 
predicted value is 0. In the case of logistic regression models the dependency of πx  
on the predictor variables is expressed through the relationship 

 
1 For a recent work in the field see for instance Havasi [2005]. 
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                                                         ( )log odds =x βx , /2/ 

where β  is a ( )1 p×  vector of unknown parameters. An unstratified model is 
defined when there is only one single constant term included among the parameters. 
This distinguishes it from the stratified model when data come from several strata 
and a different stratum specific constant term is introduced to each stratum provided 
common slope parameters. 

Based on a random sample of size n included in the ( )1n×  vector 

( )1 2 ny , y ,..., y '=y  the unconditional likelihood of the sample to be maximized with 
respect to β  is 
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β ,  /3/ 

where the 

                                           ( )1 1 2n
j i ijit y x j , ,..., p== =∑  /4/ 

sample statistic is termed as sufficient statistic for the parameter β j  in the literature 

of the exact logistic regression.2 Recalling now that { }0 1iy ,= , jt  is simply the sum 

of the predictor variable jx  for those who fall below the poverty line. Hence, if a 
constant term is included in the model, its sufficient statistic means the number of 
poor households. Obviously, jt  is the sample outcome of the random variable jT . 

In order to make inference on parameters of our interest consisting of the vector 
1β , partition the parameter vector β  into two components ( )1 2,=β β β . Suppose we 

are primarily interested in inference about 1β , and regard 2β  as „nuisance” 
parameter(s). The partitioned vector of the sufficient statistics corresponding to 

( )1 2,=β β β  is ( )1 2,=t t t  or in matrix notation 

                                                   1 1 2 2
' ',= =X y t X y t , where /5/ 

                                                        [ ]1 2,=X X X  /6/ 
 
2 For the definition of a sufficient statistic see Garthwaite–Jolliffe–Jones [1995]. 
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is the partitioned form of the ( )n p×  covariate matrix X. 
The unconditional likelihood can be written in an equivalent form of 

                                    ( ) ( )
( )

1 1 2 2

1 2 1 1 2 2

1 2
1 2

1 2
,

c , e
f ,

c , e

+

+=
∑

β t β t

β β β u β u
u

t t
t t

u u
, /7/ 

where ( )c t  is the number of ways of selecting the binary sequence y so as to satisfy 
the ' =X y t  sample condition. The summation in the denominator is over all 

'=u X Y  generated by any ( )1n×  binary sequence Y. Maximizing /7/ by choice of 
β  is equivalent to maximizing /3/ by choice of β  (see LogXact 7 User Manual 
[2005] p. 503). 

2. Hypothesis testing 

Three methods of inference are available for testing: 1. unconditional likelihood 
inference, 2. conditional likelihood inference, and 3. conditional exact inference. 
Unconditional likelihood inference is based on estimating the entire parameter vector β  
by maximizing the unconditional likelihood function. This approach assumes the 
asymptotic normality of the maximum likelihood estimates to make inferences about 

1β . Conditional likelihood inference, in contrast, is based on maximizing the likelihood 
function derived by conditioning on the sufficient statistics for 2β  in /7/. By definition 
this likelihood function is free of the nuisance parameters 2β . Finally, conditional exact 
inference is based on deriving the exact permutational distribution ( )1 2c ,u t  of the 
sufficient statistics for 1β  conditional on the sufficient statistics for 2β . 

It is apparent, that conditioning on 2t  plays a key role in inference because 
thereby parameter 2β  can entirely be eliminated from the likelihood: 

                               ( ) ( ) ( )
( )
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Maximizing /8/ with respect to 1β  yields conditional maximum likelihood 
estimates (CMLE). The fundamental difference between unconditional maximum 
likelihood estimates (MLE) and conditional CMLE inference is that MLE needs to 
estimate 2β  even if it were only a nuisance parameter, interest being focused mainly 
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on 1β  while based on the CMLE approach 2β  is conditioned out from the 
estimation. 

To test the null hypothesis 

                                                           0 1H : =β 0 , /9/ 

based on the MLE approach three basic methods are available: 1. the scores statistic 
(also known as Lagrange-Multiplier test statistic), 2. the likelihood ratio statistic and 
3. the Wald statistic. All of these statistics are asymptotically chi-squared distributed 
on d degrees of freedom under 0H  where d is the number of restrictions imposed. It 
must be emphasized that the scores statistic does not depend on the full model MLE. 
It is derived based on the MLE of the restricted model only. This means that the 
scores statistic may exist even when the MLE of the full model does not exist. 

When CMLE is applied the corresponding conditional versions of these test 
statistics are in hand to be applied. Further, when data are from several strata and 
number of the stratum specific “nuisance constants” is large relative to the number of 
observations the MLE estimates for the slope parameters may be inconsistent. In this 
case the CMLE estimates for the slope parameters 1β  (eliminating the stratum 
specific constant terms included in 2β  from the computation) are consistent. Since 
we have eliminated the stratum specific constant terms from the likelihood function 
it is no longer possible to test hypothesis about these parameters. 

For small or highly imbalanced data sets the asymptotic chi-squared distributions 
for the scores, likelihood ratio and Wald tests might not hold. This is the situation 
when it is appropriate to generate the true permutation distribution of 1T  given 2t . 
Armed with this permutation distribution one can perform exact hypothesis tests and 
generate exact confidence intervals for the parameters of interest. Based on /8/ under 

0 1H : =β 0  the exact conditional probability that 1 1=T t  given 2t  that is the null-
distribution of ( )1 1 2f |β t t  reduces to 

                                              ( ) ( )
( )

1

1 2
0 1 2

1 2

c ,
f |

c ,
=
∑u

t t
t t

u t
. /10/ 

An exact p-value for testing 0H  is then defined as follows: 

                                               ( )
1 0 1 2Rp f |∈= ∑u u t , /11/ 

where R is the region of the conditional sample space of 1T  given 2t  in which the 
values 1 1=T u  are all considered to be more extreme under 0H  than the observed 
value 1 1=T t . 
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An adjusted version of p, the so-called mid-p-value can be applied to correct the 
discrete test without compromising on its significance level: 

                                                ( )0 1 20 5midp p . f |= − t t . /12/ 

The choice of R depends on the type of exact test selected. We provide three 
methods for selecting an exact test: 1. exact conditional scores test (based on either 
asymptotic or exact variance); 2. exact conditional probability test; and 3. exact 
likelihood ratio test. 

For the exact conditional scores test, R, the extreme region of the sample space 
over which the p-value is calculated is defined to be all values of the test statistic 
having a value greater than or equal to the observed test statistic: 

                                          ( )( ) ( )( )1
1

1 1 1 1q E ' Cov E−= − −Tt T t T . /13/ 

For the exact conditional probability test, R, the extreme region of the sample 
space over which the p-value is calculated is defined to be all values of the test 
statistic having a probability smaller than or equal to the probability of the observed 
test statistic. Finally, for the exact likelihood ratio test, R, the extreme region of the 
sample space over which the p-value is calculated is defined to be all values of the 
test statistic having a likelihood ratio value greater than or equal to that of the 
observed data. 

Although the exact tests are guaranteed to protect from type-1 error at any 
specified level, the conditional scores test may be the preferred one. The main reason 
is that characterizing the rejection region R in terms of larger conditional scores 
rather than smaller conditional probabilities is intuitively appealing. Considering the 
exact conditional probability approach in the univariate case (when 1t is a scalar 1t ) 

it may happen that the conditional probability distribution ( )0 1 2f t t  has multiple 
modes so that the rejection region R is not a contiguous interval. This problem does 
not occur when exact conditional scores test is applied. Moreover, the conditional 
maximum likelihood estimate fails to exist in certain situations hence it is impossible 
to carry out a likelihood ratio test. Notice, that for the conditional scores test, 
parameter estimates are not required. 

3. Exact parameter estimation 

Estimation of the parameters by maximizing /8/ with respect to 1β  yields 
conditional CMLE point estimates. However, since the marginal interpretation of the 
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slope parameters is meaningful only in a partial sense it is reasonable to perform 
exact inference on each individual scalar parameter β j  separately, step-by-step. This 

is carried out by taking the special partitioning 1 1β=β  which is done successively 
for each parameter of interest: 

                                 ( ) ( )
( )

1 1

1 1max 1 1
1 1min

β
1 2

β 1 2 β
1 2

max
t

t u
u t

c t , e
f t |

c u , e=

= →
∑

t
t

t
, /14/ 

where 1mint  and 1maxt  are the minimum and maximum values respectively in the 
range of the random variable 1T  conditional on 2t . Notice that /14/ depends only on 

1β . 
If the observed value of the sufficient statistic 1t  is at one extreme of its range 

(when either 1 1mint t=  or 1 1maxt t= ) it is no longer possible to maximize /14/ with 
respect to 1β . This is the case when the sample is separated with respect to the 
predictor 1x  (see Christmann–Rousseeuw [2001]). In this case the likelihood function 
increases strictly monotonically as 1β| |  goes towards ∞ . When the CMLE fails to 
exist the so-called “median unbiased estimate” (MUE) is available for exact 
conditional estimation by solving the following equation: 

                                                      ( )
1 1 2β 0 5ˆf t | .=t . /15/ 

Considering the two-sided α level confidence interval (CI) the upper and lower 
bounds β+  and β−  are defined respectively based on the left and right tails of the 
distribution of 1 2T t  at the observed value 1 1T t=  in the following manner: 

                                     ( ) ( )1
1 1minβ 1 β 1 2 α 2t

u tF t f u | /
++ == =∑ t , /16/ 

                                       ( ) ( )1max
1 1β 1 β 1 2 α 2

_ _
t
u tG t f u | /== =∑ t . /17/ 

Solving /16/ and /17/ gives interval as desired. A one-sided CI can also be 
obtained spending the entire α  error using only the left tail distribution ( )β 1 αF t

+
= , 

when ( ) ( )0 1 0 1F t G t≤  and the right tail distribution ( )β 1 αG t
−

= , when 

( ) ( )0 1 0 1F t G t> . The resulted intervals are ( )β, +−∞  and ( )β ,− ∞  respectively. 
Also, regardless the type of CI requested only an open interval is available when 

either 1 1mint t=  or 1 1maxt t=  because the cumulative probability on the entire range of 
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the random variable 1 2T t  always equals 1 and hence it is independent at the value of 

1β . Then the CI bounds are constructed as follows: 

                                 ( ) ( )1min
1 1minβ 1 β 1 2 α 2 βt

_u tF t f u | / ,
++ == = = −∞∑ t , /18/ 

                                 ( ) ( )1max
1 1maxβ 1 β 1 2 α 2 β

_ _
t
u tG t f u | / , +== = = +∞∑ t . /19/ 

Finally, whenever a CI reported at α  level it is necessary to compute a p-value 
that preserves the consistency between the conclusions derived from the CI and from 
the p-value. Based on this particular method it is ensured that the exact p-value is 
less than α  if and only if the exact ( )1 α−  CI excludes the corresponding model 
parameter. According to this alternative definition the exact two-sided p-value is 
double the one-sided p-value: 2 12p p= , where the one-sided p-value is the 
minimum of the left and right tail probabilities: 

                                               ( ) ( ){ }1 0 1 0 1minp F t ,G t= . /20/ 

4. Some empirical examples 

Let us consider the subgroup of households in Budapest with 6 persons or more, 
in the year of 2003. The source of data is the HCSO, Household Expenditure Survey 
2003. Those households with per capita income below the poverty line (0.6 median 
income) are considered to be poor.3 Their status is recorded in the binary poverty 
variable by the value of Poverty = 1 which plays the role of the response variable. 
The examples of our interest are as follows. 

4.1. The unconditional, asymptotic maximum likelihood  
estimation fails to exist 

The estimation results are shown in Table 1 and the frequency distributions of the 
predictor variables considered are included in Table 2. The computations are carried 
out by the program LogXact 7 (www.cytel.com). 

 
3 The per capita median income level in the year of 2003 is HUF754.000 and per capita here stands for per 

consumption unit as defined by the OECD scheme using 1, .7 and .5 units representing first and further adults 
and children respectively. 
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Table 1  

Parameter estimates when MLE does not exist 

Model Type Beta SE(Beta) Type 95 percent 
CI lower 

95 percent  
CI upper 2*1-sided=p2 

Model term 1        
Constant MLE ? ? asymptotic ? ? ? 
Gender MLE ? ? asymptotic ? ? ? 

 MUE 4.481 NA exact 2.804 +INF 1.094e-024 
Model term 2        

Constant MLE ? ? asymptotic ? ? ? 
Permanently sick MLE ? ? asymptotic ? ? ? 

 MUE –5.29 NA exact –INF –3.614 5.809e-052 
Model term 3        

Constant MLE –8.522 0.3566 asymptotic –9.221 –7.823 2.493e-051 
Education score MLE 0.5927 0.03053 asymptotic 0.5328 0.6525 2.327e-043 

 CMLE 0.5926 0.03053 exact 0.534 0.6547 3.763e-202 
Model term 4        

Constant MLE ? ? asymptotic ? ? ? 
Education level MLE ? ? asymptotic ? ? ? 

 MUE 7.092 NA exact 5.418 +INF 6.977e-257 

Note. NA for not applicable, ? means does not exist, INF is infinite, e is exponent. 

Table 2 

Frequency distributions of the predictor variables 

Denomination Poverty = 0 Poverty = 1 Total 

Gender    
0: Female 601 0 601 
1: Male 6294 642 6936 

Permanently sick persons    
0: not present 5678 642 6320 
1: present 1217 0 1217 

Education score    
3 1009 0 1009 
5 1573 0 1573 
7 370 0 370 
8 1383 0 1383 
11 545 355 900 
12 1809 126 1935 
13 206 161 367 

(Continued on the next page.) 
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(Continuation.) 

Denomination Poverty = 0 Poverty = 1 Total 

Education level    
1 1009 0 1009 
2 3326 0 3326 
3 2560 642 3202 

Unemployed persons    
0 6459 516 6975 
1 436 0 436 
2 0 126 126 

Economic activity    
111 type 681 0 681 
112 type 986 161 1147 
113 type 410 0 410 
114 type 656 0 656 
115 type 1520 0 1520 
117 type 996 0 996 
121 type 609 481 1090 
122 type 601 0 601 
232 type 436 0 436 

Total 6895 642 7537 

Firstly, taking the gender of the head of household as a single predictor variable 
(Model term 1) “Female” is a perfect predictor hence the MLE does not exist (this is 
indicated by a ? mark) while the MUE point estimate and a one-sided confidence 
interval are available. The upper bound of the CI is +INF because the zero frequency 
occurs at the lower extreme value on the range of gender i.e. at female when 
Gender = 0 in Table 2. 

In contrast, let us consider an another single binary predictor variable namely 
whether a permanently sick person is present in the household “1” or not “0” (Model 
term 2). The conclusions are similar to those made earlier with the only exception 
that the lower bound of the CI is -INF since the zero frequency in Table 2 occurs at 
the upper extreme value of 1 in the range i.e. when a permanently sick person is 
present in the household. 

Merging categories can also influence the existence of the MLE. Considering the 
education score of the head of household as a single predictor variable (see Model 
term 3)4 it is apparent that both MLE and CMLE exist despite the fact that zero 

 
4 The entire ordinal range of the level of education: [1,2,...,13] with 13 indicating a PhD degree. 
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frequencies appear only at the lower tail of the distribution published in Table 2. 
However, merging the scores into only three levels as shown in Table 2 the MLE 
does not exist any longer as it can be seen in Table 1 under Model Term 4. 

4.2. Differences between exact and asymptotic p-values 

Despite the relatively large sample size – given that the sample is unbalanced (i.e. 
the poor/non-poor ratio is 642/6895) – one can expect that the asymptotic and exact 
p-values differ significantly. Let us take the number of unemployed persons in the 
household as a single predictor variable (Model term 5). Results of Table 3 show that 
this is not the case. The number of unemployed persons is significant at any level and 
the point and interval estimations are quite similar in magnitude. 

Selecting now the number of the dependent persons in the household as predictor 
variable (Model term 6), Table 3 shows that the exact p-value can considerably differ 
from the unconditional one. Apparently, the number of dependent persons is not 
significant at usual error levels but if the extreme 40 percent level were applied as a 
critical cut-off-value the different methods would yield different conclusions. It 
might be the case of several predictors in several strata not investigated in this paper. 

Table 3  

Parameter estimates when the MLE does exist 

Model Type Beta SE(Beta) Type 95 percent  
CI lower 

95 percent  
CI upper 2*1-sided=p2 

Model term 5      
Constant MLE –2.6420 0.04741 asymptotic –2.7350 –2.5490 3.92e-085 
Unemployed MLE 1.4910 0.07773 asymptotic 1.3390 1.6440 6.443e-043 
 CMLE 1.4910 0.07772 exact 1.3360 1.6470 3.333e-073 
Model term 6        
Constant MLE –1.4590 0.41440 asymptotic –2.2710 –0.6464 0.000432 
Dependents MLE –0.0877 0.10120 asymptotic –0.2860 0.1106 0.386 
 CMLE –0.0876 0.10110 exact –0.2912 0.1158 0.4143 

4.3. Strata specific constant terms are conditioned out 

Let us discuss again the impact of the number of unemployed persons in the 
household as the single predictor but controlling on the type of households regarding 
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the economic activity of the households as a stratum variable (Model term 7 in Table 
4). Several strata can be defined based on the classification whether an active person 
is present in the household or not and besides regarding the activity of the head of the 
household as well. The codes of these types are presented in Table 2 but their exact 
meaning is not relevant from our methodological point of view. The fact must be 
highlighted that after this stratification the MLE is not available but exact MUE 
exists and exact p-value in Table 4 tells us that variable “Unemployed” is still 
significant at any level. Notice, that both the intercept term and the nuisance stratum 
specific constant terms are cancelled out from the estimation. 

Table 4  

Stratified estimates by the type of household’s economic activity 

Model Type Beta SE(Beta) Type 95 percent 
CI lower 

95 percent  
CI upper 2*1-sided=p2 

Model term 7       
Unemployed MLE ? ? asymptotic ? ? ? 
 MUE 2.8680 NA exact 2.0230 +INF 9.471e-050 
Model term 8       
Education score MLE –0.2139 0.09588 asymptotic –0.4018 –0.02596 0.0257 
 CMLE –0.2139 0.09588 exact –0.4065 –0.02154 0.02889 

Finally, Table 4 reconsiders the model with the education score of the 
household’s head as the predictor variable but using the stratified sample described 
previously. Although both the MLE and the CMLE exist the predictor “score of 
education” at 2 percent level is no longer significant, moreover, the signs of both 
parameters have changed. Notice again that both the intercept term and the nuisance 
stratum specific constant terms are cancelled out from the estimation. 

4.4. Conflicting test results 

So far, in our study only the 2*1-sided type 2p -value was applied to ensure the 
consistency with the 95 percent CI published. However, the exact p-values may vary 
depending on the special test statistic type applied, such as scores, likelihood ratio 
and Wald, especially when the sample size is extremely small. This problem is 
illustrated as follows. 

Table 5 gives the exact test results for two predictors. Firstly, for the age of the 
head of the household (Age) then subsequently for the response (yes or no) whether 
the household has suffered poverty ever before (Suffered). The sample has been 
restricted to the types of the households in Budapest those with more than 6 persons 
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exhibiting gender of the household’s head. Table 5 shows that in the case of Age 
only the score test exists among the asymptotic tests but its p-values yield different 
decisions at 5 percent error level depending on the type of test considered. Moreover, 
exact tests give the same p = 0.07143 value in this case (this is not necessary in 
general) but the p-mid value for the exact likelihood ratio test accepts the null-
hypothesis at 5 percent level while the other exact tests reject it. 

Finally, considering the question of “Suffering poverty ever before” based on the 
p-values at 5 percent error level the conclusion of the exact probability test differs 
from that of the other exact types and both the p-values and the p-mid values vary 
substantially. 

Table 5  

Exact test results 

Type of test Statistics DF p-value p-mid 

 0H :Beta_Age = 0 

Score 4.317 1 0.03774 NA 
Likelihood ratio ? ? ? ? 
Wald ? ? ? ? 
Exact score_asy 4.317 NA 0.07143 0.05357 
Exact score 3.777 NA 0.07143 0.05357 
Exact probability 0.03571 NA 0.07143 0.05357 
Exact likelihood ratio 8.997 NA 0.07143 0.03571 

 0H : Beta_Suffered = 0 

Score 6.107 1 0.01347 NA 
Likelihood ratio ? ? ? ? 
Wald ? ? ? ? 
Exact score 5.343 NA 0.03571 0.01786 
Exact probability 0.03571 NA 0.07143 0.05357 
Exact likelihood ratio 8.997 NA 0.03571 0 

Finally, we can conclude that when a stratification of the data is required in many 
dimensions in order to control some factors, other covariates of the response variable 
are likely to become perfect predictors. In this case the exact approach of inference is 
appropriate providing reliable results if they exist. 
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