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The vast majority of literature addressing time series analysis focuses on uniform-

ly spaced events, where the gaps between observations are of equal lengths. In such 

cases, the specific times or dates of the observations do not need to be recorded, as we 

can retain all information by only indicating the time of the first and last observations, 

along with the frequency of occurrences. These data sets are often referred to as equi-

distant time series, where the times or dates of observations are typically replaced with 

consecutive integers ( 1, 2, …, t T ) without losing any information.  

However, time series analysis is not limited to such “ideal” cases, as the lengths 

of gaps between observations may vary. Financial markets, among many other fields 

within economics, are a great example: price charts often include gaps of different 

lengths, due to the presence of weekends and national holidays, but it is even more 

prevalent on intra-day levels as nothing guarantees that market transactions would 

take place at a regular pace, say, every 10 or 20 seconds. In macro-level demand 

models, for instance, non-observable (latent or induced) demand is often replaced 

with unequally spaced purchases.  

Marine biology, astrophysics and meteorology apply a wide variety of models in 

order to overcome the challenges posed by non-equidistant observations. The reasons 

why such unstructured time series are captured would be worth a study by itself, 

including the measurement techniques and corresponding strategic considerations 

that may improve the results.1 Even though this unstructuredness can be described as 

an anomaly, we treat this phenomenon as a given, including the difficulties and chal-

lenges that are involved, and that today’s analysts have to face. 

In attempt to overcome these difficulties, a handful of techniques and approaches 

have been developed over time. 

1. In financial time series models (or even in meteorogical models 

addressing levels of precipitation), each gap between actual observa-

tions is usually filled with either zeros or with the value of the preced-

ing observation.2 Models, then, are based upon this “mended,” aug-

mented time series. This method, quite obviously, requires careful 

considerations as substitutions in large quantities can result in mislead-

ing conclusions. 

 
1 Three main categories can be differentiated within the group of unstructured time series, all of which are 

referred to as non-equidistant time series in this paper. These categories include structured but unequally spaced 

time series; structured time series with occasionally missing observations; and purely unstructured time series. 
2 Yield projection is one of the most frequent tasks in price modelling. In this case, replacing missing yields 

with zeros is equivalent to substituting the missing prices with the last preceding values (forward-flat interpolation). 
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2. Finding a frequency that matches every observation appears to 

be a more reasonable approach, as we can interpolate the observed 

values in order to substitute the missing values. The application of lin-

ear interpolations is undoubtedly a quick and convenient solution, alt-

hough non-linearity tests often become less effective as they tend to 

indicate erroneously non-linearity (Schmitz [2000]). 

3. A substantially more complex solution that this paper will not ad-

dress in detail is creating an estimating function based on the covariance 

structure (autocovariance function) of the time series in order to fill in the 

missing values. In case a gap can be described with random variables 

having a probability distribution that is identical with that of the observed 

values, the Lomb-Scargle algorithm can be applied (see Lomb [1976] or 

Schmitz [2000]). This algorithm provides a periodogram of the missing 

values, and makes assumptions regarding gaps unnecessary. 

4. The application of continuous-time models may be considered 

when the data series are genuinely unstructured. This issue has been ad-

dressed relatively early in modelling literature (see Jones [1985], Berg-

strom [1985], or Hansen–Sargent [1991]). We also recommend the 

works of Brockwell [2001] or Cochrane [2012] who gave excellent 

summaries on this subject). For an exhaustive description of the state-

space model based solution of parameter estimation, please refer to Wang 

[2013]. This model class is primarily designed for predictive purposes, 

however, the methods are based on the assumption that the time series, in 

fact, are equidistant, which can certainly be considered a weakness. 

In this study, we focus on spline interpolation, a special class of interpolation 

methods. The focal issue being addressed is that the augmentation of gaps within 

non-equidistant time series (using averages, preceding values, etc.) often leads to 

incorrect and misleading conclusions as the augmented time series, after the augmen-

tation, are treated as if they were, in fact, equidistant. Since the modelling techniques 

thereafter are based upon the assumption of equidistance, the original data generating 

function may have different characteristics than the ones that are implied based on 

the augmented time series. Another main purpose of this study is to illustrate that 

despite the fact that statistical software packages offer a variety of augmentation 

techniques “on a silver plate”, they should not be routinely, “blindsightedly” applied. 

After a brief overview of the most popular interpolation techniques, we are going 

to pay close attention to the basic features of spline interpolation. Following the sec-

tion dedicated to this area, we address the risk of misspecifying data generating pro-

cesses when the usual tests are run on augmented time series. To achieve this goal, 

we used computer-based simulations. In the final section of the paper, however, we 
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use empirical non-equidistant time series in order to better portray our conclusions 

and recommendations. 

1. Reassumption of missing values 

The typical way of handling non-equidistant time series is by assuming that there 

is, in fact, an original equidistant time series from which certain values are missing. 

The most frequently used step, then, is the application of time series interpolation.3 

Here, we discuss two popular types of interpolation:  

– the linear type (or log-linear, as the concept of the two are very 

similar) and  

– the spline approach. 

Both types of interpolation begin with the same step: we have to determine the 

frequency that best describes the time series in order to identify the locations of miss-

ing values to be augmented. In certain cases, this step doesn’t require careful consid-

erations, as a “natural” frequency may be trivial, even though not all expected obser-

vations are recorded (e.g. the gaps in daily stock market closing prices where the 

natural frequency is one per day and every sixth and seventh value is missing). In 

many other situations, however, there is no such trivial frequency: this is the case, for 

example, in time series compiled from world records in sports or when we consider 

the proportions of mandates representing the power of a government coalition, where 

the gaps between occurrences are not supposed to be equally spaced in the first 

place. Regarding the stock markets, national holidays across countries may cause 

similar problems and lead to unstructuredness. 

The general recommendation is to derive the hypothetical frequency from the 

smallest gap between the actual observations. This, however, does not necessarily 

result in a frequency to which all actual values can be fitted. When it comes to de-

termining hypothetical frequencies, the core dilemma is the following: 

– On one hand, most or all original observations should match the 

theoretical (augmented) time series, which is an argument for assum-

ing high hypothetical frequency. 

 
3 Note that interpolation is a generic term used in many contexts: its use is not limited to augmenting gaps 

in time series, but every estimation technique is referred to as interpolation when an ex post estimate is used 

between a pair of observations. 
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– On the other hand, the number of values obtained with interpola-

tion should not exceed (or, according to some arguments, get close to) 

the number of actual values. This is an argument against assuming ex-

cessively high hypothetical frequencies.4 

Once the hypothetical frequency is determined and the time series that still in-

cludes missing values is converted to equidistant sets, interpolation means the esti-

mation of missing values between each pair of known empirical values.  

The augmented time series obtained after the interpolation should have two main 

characteristics (prerequisites). Preferably, it should: 

– not differ from the original values where empirical observations 

exist, and 

– be relatively smooth. 

Let the empirical time series be 

1 2
, , , , , 

k Tt t t ty y y y  

where the distance 2 1t t  isn’t necessarily equal to the 3 2t t  distance, etc. Let Δ  

denote the largest distance and let each 1k kt t   be equal to or divisible by Δ .5  

From this, the following, incomplete time series can be constructed: 

1 1 1 12, , , , , , 
Tt t Δ t Δ t j Δ ty y y y y     

where 
1t j Δy    are values to be determined by interpolation when a 1t j Δ   does 

not match any of the empirical kt  observations. 

Essentially, the purpose of interpolations is to give an estimation of values corre-

sponding to points of time where no empirical observations were made or recorded. 

Linear interpolation is a simple method that does not completely fulfil our previous 

prerequisites. If  

   1 11 11 1k kt t j Δ tt j Δ t j Δ
y y y y y

       
     

 
4 In the last two decades, statistical literature has placed substantial emphasis on the fact that these criteria 

are difficult to meet in the case of ultra-high frequency data sets. For an overview of methodological tools and 

techniques that can be applied in similar situations (such as analyses based on stock market transactions), please 

refer to Engle [1996]. 
5 This is often but not necessarily the same as the smallest distance between any two actual observations.  
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where 
1t j Δy    are originally missing but both of their neighbours are known, the 

supplemental values can be obtained using 

1 1

1 1 1
1 2

k k k k

k k

t t t t

t j Δ t t
k k

y y y y
ŷ y y

t t Δ

 

  


 
   


. 

In case there are multiple missing values between two observations, interpolation 

can be performed by adjusting the denominator. In general, linear interpolation can 

be formalized as 

                                                  
1

1
k k

LIN
t tŷ λ y λy


    /1/ 

where 
1kt

y


 is the last non-missing value, 
kt

y  is the subsequent non-missing value, 

and λ  denotes the relative position of the missing value between two known em-

pirical values. (If there is one missing value, the known difference has to be divid-

ed by two; in the case of two missing values, the difference is to be divided by 

three, etc.) 

Linear interpolation, however, tends to result in hectic, “fractured” diagrams, i.e. 

this method often leads to estimating functions with wildly oscillating slopes. To 

“tame” this phenomenon, we often turn to log-linear interpolation where estimated 

values can be generated using 

                                                 
 

1
1 t tk k

λ ln y λln yLOGLINŷ e 
 

 . /2/ 

Even though the logarithmic function leads to smoother diagrams, other problems 

arise, as negative values cannot be directly dealt with. Therefore, despite their sim-

plicity, linear and log-linear interpolations are typically recommended as exploratory 

tools only.6 

Spline interpolation, as well, has been developed with the purpose of obtaining 

smooth functions.7 According to the original definition of this method, an  S t  

interpolating function is assigned to each section, each of which has to satisfy cer-

tain conditions. Using the same notations as earlier, where 1 2 Tt t t    are the 

points of observations and assuming that the corresponding values depend on time, 

 
6 These methods can be further improved by considering additional values besides the ones immediately 

before and after a given missing value, which can result in smoother functions. One of these methods is the 

cardinal spline method, a built-in tool included in the Eviews software package. 
7 For the first mathematical reference to splines, see Schoenberg [1946].  
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i.e.  
kt ky f t , the goal is to find an  S t  function that fulfils the following crite-

ria:8 

                                                    1kt TS t S t t t ,t    ,  /C1/ 

                                                              
kk tS t y , /C2/ 

                                                       
11 1k kt k t kS t S t

  . /C3/ 

These conditions, in a less formalized language, mean that interpolation can be 

performed piecewise, where each segment can be defined with a different function 

/C1/; the interpolating function’s values match the original observations where they 

exist /C2/; and the curve that is obtained as a result of interpolation is continuous as 

interim observations are matched by connecting segments where both segments gen-

erate identical values /C3/. These three conditions are referred to as the general defi-

nition of spline interpolation.  

The taxonomy of spline methods follows the type of the  S t  functions.9 Most 

often, these functions are polynomials chosen in a way that the derivatives (slopes) 

of the connecting segments are identical. Generally, a spline’s degree and order are 

determined by the highest exponent of the polynomials in each segment (degree) and 

by the order of the two derivatives in the connecting segments (order).10 

Here, we focus on two popular kinds of spline interpolation, in particular. These are: 

– linear splines (discussed mostly for didactic reasons), and 

– third degree, second order splines. 

As for linear splines, let’s focus on one interval first, and let this interval be 

1 ,k kt t
   . Let us assume that the values at both ends of the interval are known. If 

the interpolated curve (stochastic process) between the two end points can be deter-

mined, then the missing values can be obtained from this very function.  

 
8 Here and hereinafter, criteria are abbreviated by “C”.  
9 Even though the definition allows the use of different types of functions in each segment, generally the 

same class of interpolating functions is used in all intervals. 
10 The assumption that a process can be differentiated on a given interval is a serious restriction as it 

doesn’t hold true for Brown motions. Therefore, it is important to emphasize that interpolation techniques are to 

be applied with caution.  
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By definition, 

 
1 1 1 11 1k k k kt k t t k tS t α β t y

       , 

 
1 1 1k k k kt k t t k tS t α β t y

  
     

hold true for any spline. From this system of equations, the unknown parameters 

(
1 1
, 

k kt tα β
 

) can be calculated, therefore, the spline can be determined.11 The solu-

tion is identical with the linear estimation discussed earlier, i.e. 

                          1

1 1 1
1

k k

k

t tLIN
t t k k k

k k

y y
S t y y t t t t ,t

t t



  



      


. /3/ 

From this, it follows that the spline parameters can be different in each 1 k kt ,t
    

interval. 

In practice, typically third degree, second order spline interpolations are used, as 

their flexibility is coupled with a reasonable amount of calculations required.12 In 

this case (cubic splines), three more conditions need to be added, extending /C1/–

/C3/:13 

                                                         
1k kt k t kS t S t


  , /C4/ 

                                                         
1k kt k t kS t S t


  , /C5/ 

                                                      1 0 0TS t S t   . /C6/ 

In order to obtain the curves, those represent the interpolation, the parameters in  

 

   

     

1 1

1 1 1 1

1

2 3

1 1 1 1               ,

k k

k k k k

CUB
t k t

t t k t k t k k k

S t S t y

α β t t γ t t δ t t t t t

 

   



   

  

         
 /4/ 

 
11 The system of equations can always be solved as by definition, 

1 0k kt t  
 
holds true for the determi-

nant of the coefficient matrix. 
12 Third degree, second order splines are typically referred to as cubic splines.  
13 This representation is valid for natural splines. It is not impossible that the second derivatives at the two 

endpoints are not equal to zero.  
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need to be determined, where  4 1T   unknown parameters are paired up with the 

same number of conditions in /C2/–/C6/, which grants the feasibility of these calcu-

lations.14 

The formerly described cubic spline interpolation is often replaced by CRS15 in 

practical scenarios (Catmull–Rom [1974]). This method can be applied when non-

equidistant time series are presumably equidistant by nature but include missing 

observations. Let us introduce the notation  

0t j Δ jy y    

where 0y
 
is the first empirical value, 1y  is the second one, etc. The core idea, then, 

is to assume that all values (observed or missing) fit on a cubic polynomial of known 

values and derivatives:  

  2 3
0 1 2 3y t α α t α t α t     . 

This, with respect to the first two points, means 

   00y α , 

   0 1 2 31y α α α α     , 

   10y α  , 

   1 2 31 2 3y α α α     . 

Let us solve the following system of equations for the unknown parameters: 

  0 0α y , 

  1 0α y , 

        2 3 1 0 2 0 1α y y y y        , 

        3 2 0 1 0 1α y y y y        . 

 
14 For proof, see Mészáros [2011]. The equal number of unknown parameters and conditions is necessary 

but not sufficient to solve the system of equations, as the non-singularity of the coefficient matrix is also re-

quired to obtain an existing and unique solution. 
15 CRS: Catmull-Rom spline. 
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Plugging the results back into the original polynomial and performing necessary 

simplifications, we arrive at the following third degree polynomial: 

                            
         

       

2 3 2 3

2 3 2 3

1 3 2 0 3 2 1

       2 0 1 .

y t t t y t t y

t t t y t t y

     

      
 /5/ 

The difficulty of solving the equation in /5/ is caused by the fact that the deriva-

tive (slope) of the fitted curve is hard to determine. The fundamental concept of the 

CRS method is the assumption that these derivatives can be obtained based on the 

observed values. To find the spline on a 1 j jy , y 
 
   interval, let us define the corre-

sponding slopes as 

 
1 1

2

j jy y
y j

 
   , 

 
2

1
2

j jy y
y j

 
    . 

From this, the third degree polynomial can be rewritten in a matrix form: 

 

1

2 3 1 1

2

1 0 0 0

0 0 1 0
1   

3 3 2 1 2
2 2 1 1

2

j

j

j j

j j

y

y

y y
y t t t t

y y



 



 
 

   
   

            
      

  

 . 

After basic transformations, we obtain 

 

1

2 3
1 1

12 2

1 1
2 2 2

0 1 0 01 0 0 0

0 0 1 00 0 1 0
1    

0 03 3 2 1

0 02 2 1 1

j

j

j

j

y

y
y t t t t

y

y







   
   
                 
      

, 

which can also be written as 



32 GÁBOR RAPPAI 

 
HUNGARIAN STATISTICAL REVIEW, SPECIAL NUMBER 19 

                        

1

2 3

1

2

0 2 0 0

1 0 1 01
 1   

2 5 4 12

1 3 3 1

j

jCRS

j

j

y

y
y t t t t

y

y







  
  

             
     

. /6/ 

The equation in /6/ is relatively easy to solve, and the results represent the time 

series between two chosen points. (From the equation, it also follows that the curves 

resulting from the interpolation can be different in each interval.) 

Let us examine this through a simple example. Figure 1 represents the quarterly vol-

ume indices of the Hungarian real GDP16 (quarterly changes) between 1996 and 2013. 

Figure 1. Changes in the Hungarian real GDP, 1996–2013  

(quarterly volume index) 

96.0

97.0

98.0

99.0

100.0

101.0

102.0

103.0

1
9

9
6
. 

I.

1
9

9
6
. 

IV
.

1
9

9
7
. 

II
I.

1
9

9
8
. 

II
.

1
9

9
9
. 

I.

1
9

9
9
. 

IV
.

2
0

0
0
. 

II
I.

2
0

0
1
. 

II
.

2
0

0
2
. 

I.

2
0

0
2
. 

IV
.

2
0

0
3
. 

II
I.

2
0

0
4
. 

II
.

2
0

0
5
. 

I.

2
0

0
5
. 

IV
.

2
0

0
6
. 

II
I.

2
0

0
7
. 

II
.

2
0

0
8
. 

I.

2
0

0
8
. 

IV
.

2
0

0
9
. 

II
I.

2
0

1
0
. 

II
.

2
0

1
1
. 

I.

2
0

1
1
. 

IV
.

2
0

1
2
. 

II
I.

2
0

1
3
. 

II
.

Percent

year, quarter

 
Source: Hungarian Central Statistical Office (https://www.ksh.hu/docs/eng/xstadat/xstadat_infra/e_qpt008a.html). 

In Figure 1, where each quarter is assigned to a value (our time series consists of 

72 elements), trends are relatively hard to identify – hence the popularity of line 

charts.17 By routinely connecting quarterly observations in such a fashion, we “in-

 
16 GDP: gross domestic product. 
17 This is one of the reasons why line charts are more often used to represent time series, even if this is 

somewhat misleading. For rules and principles on visual representation, see Hunyadi [2002]. 
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vent” some of the values between actual observations, often without being aware of 

having done so.  

As mentioned earlier, interpolation can be performed in many ways. Figure 2 de-

picts estimated values by month where data points are broken down from quarterly 

information, using the linear and the CRS method.18 In order to give a better visual 

representation, Figure 2 only includes the last four years’ data, so that factual infor-

mation (GDPVOL) and the values that were obtained from linear and CRS interpola-

tion (GDPVOL_LIN, GDPVOL_CRS) are easier to tell apart.  

Figure 2. Changes in the Hungarian real GDP, 2010–2013  

(monthly values obtained from interpolated quarterly volume indices) 
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Source: Here and hereinafter, own calculation.  

In certain points, the two interpolated time series in Figure 2 show noticeable 

differences, and generally, values that were obtained from polynomial splines tend 

to overshoot the values that were estimated with linear interpolation, especially 

where trends rebound, such as in mid-2011 or mid-2012. This is one of the reasons 

why the selection of interpolation techniques requires attention to detail and thor-

oughness.  

 
18 The Hungarian Central Statistical Office also provides a monthly breakdown of quarterly GDP values 

(not volume indices), following a methodologically different path, and therefore arriving at dissimilar numerical 

results. 
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2. Falsely identified process characteristics 

In order to demonstrate the possible changes in the characteristics of data generat-

ing processes that may be induced by interpolation, we turned to simulations.19 To 

maintain the comparability of the results, the constants (parameters) were chosen to 

be identical (or quasi-identical where full identity was not possible). Throughout the 

analyses, we followed the same principles:  

1. For each predetermined model, we generated time series with 

lengths of 1 000. 

2. From these time series, we randomly dropped 10, 20, ..., 90 per-

cent of all “observations”. 

3. We augmented the resulting non-equidistant time series in two 

different ways: the missing values were either 

– substituted with the expected values of the given process, or 

– filled in using cubic interpolation.  

4. Finally, based on 1 000 independent “experiments”, we exam-

ined the differences between the characteristics of the original and the 

augmented time series for each of the two methods of replacement. 

We examined three kinds of data generating processes, each of which are fre-

quently used in empirical time series analysis. From these we generated the follow-

ing three pairs of time series: 

– determined by first order VAR20 (1) models,  

– including stochastic trends (random walk),  

– being in perfect first order cointegration. 

For all simulated time series, each value preceding the first empirical observation 

( 0y ) was zero, and the random variables were chosen to be white noise processes 

(denoted by tε  or by 1tε , 2tε
 
when two processes were being handled concurrently). 

The time series that have been generated from the VAR model were based on the 

model below and following the concept of the Granger test, in order to assess and 

analyse the unintended changes that may appear in the causal relationships between 

the time series 

1 1 1 2 1 10 9 0 4t ,t ,t ty . y . y ε     ,       2 2 1 1 1 20 9 0 4t ,t ,t ty . y . y ε    . 

 
19 Simulations were run using EViews 8.1. 
20 VAR: vector-autoregressive.  
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This, in a matrix form, can be expressed as 

1 11 1

2 12 2

0 9 0 4
  

0 4 0 9

,tt t

,tt t

yy ε. .

yy ε. .





     
      

     
 . 

Based on common facts, processes that can be formalized using the VAR model 

are stationary if all eigenvalues of its coefficient matrix are inside the unit circle, and 

all non-diagonal elements of the parameter matrix are non-zero elements. As both 

conditions hold true in our example, Granger causality is present between the two 

variables. In our simulation, we investigated whether it is possible for the causality to 

disappear following the augmentation of non-equidistant time series. 

Figures 3. a) and 3. b) represent the results of the simulations regarding the VAR 

models.  

Figure 3. Levels of significance in Granger tests for causality between the variables obtained  

from the VAR data generating process 

a) If missing values were replaced with their expected values 

 

b) If missing values were replaced using spline interpolation 

 

Note. 90% of the original observations were missing. 
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Essentially, when missing values were replaced with averages, the Wald test de-

termined causality (rejected the null hypothesis) in only 355 instances at 0.05p . 

According to the same test at 0.1p , decisions that matched the original data gen-

erating process only reached 472. Using spline interpolation, on the other hand, led 

to a higher number of correct decisions: according to the same test, the number of 

matching decisions reached 970 and 979 at 0.05p  and 0.1p , respectively, out 

of 1 000 instances. Based on this, we can conclude that the method of cubic spline 

interpolation is less likely to identify falsely the data generating process when the 

number of missing values is substantial.  

As for the second type of data generating processes discussed herein, random 

walk plays a prominent role in time series analysis. Its significance, from our per-

spective, is due to two particular reasons. Firstly, its presence is the null hypothesis 

of the unit root tests, and secondly, its shifted version is the pure form of stochastic 

trends. Accordingly, we simulated two different types of random walk: 

– random walk without drift 

1t t ty y ε  , 

– random walk with drift 

10.01t t ty y ε   . 

Next, we examined whether it is possible to obtain a stationary unit root process 

if we remove some of its values and then “patch” the gaps using the augmentation 

techniques described earlier. To test the existence of unit roots, ADF21 was used. 

Regarding the third type of data generating processes discussed herein, we fol-

lowed the specifications proposed by Granger [1988] in our simulations. The pro-

cesses were: 

1 1t t ty x ε  , 

2 22t t ty x ε   

where 

1t t tx x ε  . 

Next, we examined the frequency of occurrences when theoretically cointegrated 

time series were determined as non-cointegrated, according to the Engle-Granger 

two-step method. 

 
21 ADF: augmented Dickey-Fuller test. 
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The main results of the simulations are summarized in Table 1. 

Table 1  

Falsely identified data generating processes  

(count, out of 1000 simulated instances at 0.05p ) 

Percent  

of missing observations 

Type  

of augmentation 

Process 

VAR 
RW  

( 0μ ) 

RW  

( 0.01μ ) 
ECM 

10 
Substitution 0 232 249 0 

Fill-in 0 57 52 0 

20 
Substitution 0 441 416 1 

Fill-in 0 47 48 0 

30 
Substitution 0 591 567 8 

Fill-in 0 52 56 0 

40 
Substitution 0 713 723 33 

Fill-in 0 36 60 0 

50 
Substitution 0 823 815 38 

Fill-in 0 65 57 0 

60 
Substitution 0 906 893 34 

Fill-in 0 67 70 0 

70 
Substitution 9 960 955 44 

Fill-in 0 79 43 0 

80 
Substitution 151 979 980 20 

Fill-in 1 73 67 0 

90 
Substitution 645 998 999 9 

Fill-in 30 123 105 1 

Note. The term “fill-in”, in our table, means that missing values were replaced with their respective ex-

pected values. “Substitution” refers to augmentation using cubic spline interpolation. VAR stands for the vec-

tor-autoregressive model, RW denotes random walk, and ECM is the acronym denoting the cointegrated sys-

tem, as it can be operationalized using the error correction mechanism. 

The key observations and conclusions, based on the numerical results, are the fol-

lowing: 

– Substitution may obscure Granger causality, especially at larger 

proportions of missing values. Our simulations support the conclusion 

that spline interpolation leads to better results than using expected val-

ues to replace missing observations. 
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– “Patching” non-equidistant random walk processes with expected 

values is an unequivocally erroneous choice. The misspecification of 

the original data generating process using spline interpolation, howev-

er, is unlikely, unless the proportion of missing values is substantial. 

(Note that the augmented Dickey-Fuller test itself results in 50 errone-

ous decisions out of 1 000 equidistant instances). 

– In the case of cointegrated time series, spline interpolation led to 

fewer (close to zero) misspecifications. According to our analyses, 

spline interpolation is unquestionably the better alternative. 

Based on our simulations, we can state that data augmentation with spline inter-

polation carries substantially less risk than traditional methods, given that the time 

series at hand are non-equidistant. 

3. Illustrative examples 

To understand better the technique of spline interpolation, let us examine two 

empirical examples.22 

In our first example, let us take a closer look at the best times of two swimmers, 

Daniel Gyurta (Olympic and world champion, Hungary) and his rival, Michael Ja-

mieson (Scotland), particularly their results in the 200-meter breaststroke. Our analy-

sis encompasses the best times in a period of five years, during which 32 competi-

tions were held where either of the swimmers were involved. During this time frame, 

there were only 7 occasions when both sportsmen participated. For an overview of 

the raw data set, please refer to Table 2. For a visual representation, see Figure 4. 

As we can see, both swimmer’s times are “generated” in a non-equidistant, ran-

dom fashion.23 Additionally, the dates of relevant competitions do not necessarily 

coincide, except when both athletes participate in the same meet.  

 
22 Please note that the results in this section are purely illustrative, and they are not intended to be used for 

professional decision-making purposes. 
23 The situation would be different if we considered the results of every competition and training, but this 

falls outside the main purpose of this paper. As our primary goal was to provide an illustrative example of the 

methods themselves, factors that may influence the swimmers’ performance, such as life events etc., have been 

excluded from our analysis. 
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Table 2 

Best times by meet, 2009–2013  

(minutes:seconds.hundreths) 

Date Event Gyurta Jamieson 

07/26/2009 World Cup 2:08.71  

04/03/2010 British Gas Championships  2:14.85 

06/22/2010 British Gas Championships  2:13.63 

08/09/2010 European Championships 2:08.95 2:12.73 

01/15/2011 Flanders Swimming Cup 2:13.21 2:16.59 

10/04/2010 British Commonwealth Games  2:10.97 

02/11/2011 BUCS Long Course Championships  2:13.31 

03/05/2011 British Gas Championships  2:10.42 

03/25/2011 Budapest Open 2:12.67  

06/04/2011 Barcelona Mare Nostrum 2:12.48 2:12.83 

06/08/2011 Di Canet Mare Nostrum  2:12.28 

06/22/2011 Hungarian Championships 2:10.45  

06/30/2011 Scottish Gas National Open Championships  2:13.04 

07/24/2011 World Cup 2:08.41 2:10.54 

12/02/2011 Danish Open  2:10.40 

01/13/2012 Victorian Age Championships  2:12.15 

01/14/2012 Flanders Swimming Cup 2:11.79  

03/03/2012 British Gas Championships  2:09.84 

03/29/2012 National Open Championship 2:12.65  

05/21/2012 European Aquatics Championships 2:08.60 2:12.58 

06/02/2012 Mare Nostrum  2:11.21 

06/13/2012 Budapest Open 2:09.89  

07/06/2012 6th EDF Open Championship  2:11.24 

07/28/2012 London Olympics 2:07.28 2:07.43 

01/19/2013 Flanders Speedo Cup 2:10.50  

02/08/2013 Derventio eXcel February Festival  2:11.75 

03/07/2013 British Gas Swimming Championships  2:10.43 

03/29/2013 Budapest Open 2:10.68  

06/13/2013 Sette Colli Trophy 2:10.25  

06/26/2013 Hungarian Championships 2:09.85  

06/28/2013 British Gas Championships  2:07.78 

07/28/2013 World Cup 2:07.23 2:09.14 

Source: http://bit.ly/1ECuw3N, the official website of the International Swimmers’ Alliance. Only best 

times per meet are considered.  

http://bit.ly/1ECuw3N
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Figure 4. Best times of Gyurta and Jamieson  
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Figure 4 is not overly informative: best times are difficult to identify and compar-

isons are challenging to make. Even though individual results are obviously easy to 

compare (e.g. Gyurta beat his rival during the London Olympic Games or at the 2013 

World Championship; lesser times are better), but a similar comparison is more dif-

ficult to make with respect to the entire time horizon involved in our analysis. 

Interpolation, as it provides us with certain values in-between actual observations 

is one way to make such comparisons possible.24 Our primary goal, now, is to illus-

trate the theoretical possibility of estimating changes in performance using interpola-

tion when empirical values are assigned to unequally spaced events. As the dates of 

competitions were not equally spaced, i.e. the assumption that the time series is equi-

distant with certain missing observations does not hold true, the application of cubic 

splines appears to be a reasonable response.25 For a visual representation of the re-

sults, see Figure 5.  

 
24 Again, it is not our goal to discuss whether the results are actually comparable from a sports profession-

al’s point of view (e.g. whether having a competition before, during or after a training camp affects perfor-

mance, etc.). 
25 This does not imply that competitions are held on a specific day in each month with or without the partic-

ipation of either Gyurta and/or Jamieson, but it refers to the fact that there are specific sports seasons in each 

year with longer periods of off-season intervals in-between.  
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Figure 5. Best times of Gyurta and Jamieson  

(estimated values using spline interpolation) 
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One does not have to be well versed in swimming to realize that the “fictional” val-

ues generated by interpolation are not necessarily realistic. Based on this figure, one 

may come to the conclusion that even though the Scottish athlete has lost the Olympic 

Finals, his performance has gone through such an improvement during the Olympic 

Games that he would have been able to achieve significantly better results shortly af-

terwards, and possibly even set a new world record. Then, following 2012, his perfor-

mance started to decay again, and despite a rapidly passing improvement, he already 

got past his top shape before the world championships began. Gyurta, on the other 

hand, appears to be the athlete with more stable (less unpredictable) numbers whose 

performance peaks at the most important meets, each year. If we catch ourselves auto-

matically accepting such conclusions as a kind of model verification, we have to re-

mind ourselves repeatedly that spline interpolation is a tool to be handled carefully. 

Let us now look at another example that we have referred to earlier in this study. 

According to the market model (see Bélyácz [2009], p. 77.), the yields of a specific 

stock (or any investment) can be written as 

i Mr α βr    

where ir  is the yield of the investment i, Mr  is the yield of the market portfolio, and 

α  and β  are model parameters that are to be estimated. In this model, the latter 
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parameter has a more significant role as it is often used as a proxy, measuring the 

individual risk of a given investment.  

In the specific parameter estimation process, the yield of an individual investment 

(stock) at time t is calculated using 

, 1

, 1

log
it i t

it it
i t

p p
r Δ p

p






    

where itp  denotes the closing price of the given stock on day t. 

Similarly, market portfolio yields can be estimated using the closing prices of the 

stock market index (in our example, the BUX26). Therefore, we can populate the time 

series for both variables that are required in our model (market and individual in-

vestment yields). Since yields typically form stationary time series, OLS27 parameter 

estimation is considered an efficient method.28 

From our point of view, the fact that daily closing prices are only seemingly 

equidistant (the values from weekends and holidays are, in fact, missing) is of high 

importance. In practice, β  estimation is often performed after the missing values are 

replaced with the previous days’ closing prices, i.e. yields on such days are made 

equal to zero. This, however, involves the risk that otherwise existing causal rela-

tionships between variables may disappear.  

Let us now consider the first four months of 2014, and examine the difference of 

the results between the two approaches of time series augmentation (fill-in versus 

substitution). In this example, we are looking at the estimated β  values of the blue 

chips traded on the Budapest Stock Exchange. For a visual representation of the 

BUX closing prices within the given period, see Figure 6.  

 
26 BUX: Budapest Stock Index. 
27 OLS: ordinary least squares. 
28 In a previous study (Varga–Rappai [2002]), we have shown that parameter estimation leads to more 

sound results using GARCH (generalized autoregressive conditional heteroscedastic) specifications. This, 

however, exceeds the focus of this paper. 
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Figure 6. Closing prices of the BUX in the first four months of 2014  
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The gaps in Figure 6 represent weekends, holidays and other occasions when 

trading is suspended. We would obtain similar gaps by depicting the closing prices or 

daily yields of the aforementioned blue chips, specifically the stock prices of the 

following companies: MOL, MTELEKOM, OTP, and RICHTER. 

We estimated β , the coefficient describing individual investment risk, in three 

different ways. 

– Only considering days of active trading, i.e. with the assumption 

that yields between Fridays and Mondays are generated the same way 

as they are between Mondays and Tuesdays. This scenario resulted in 

83 individual data points. 

– In our second approach, every day within the four-month period 

was assigned a daily yield, in a way that weekends and holidays gen-

erated zero yields, and other values were obtained from actual yields 

(from the differences between closing prices). This method resulted in 

a time series consisting of 120 data points for each blue chip. 

– Finally, we used cubic spline interpolation in order to eliminate 

gaps, from which four time series (one for each stock) of 118 data points 

were obtained, as the first two days of the year had no preceding values. 

For a summary of results, see Table 3. 
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Table 3 

Estimated β values by method of augmentation 

Blue chip 

Approach (length of time series) 

Weekdays only 

(T = 83) 

0 yield on weekends 

(T = 120) 

Augmented time series  

using spline interpolation 

(T = 118) 

MOL 0.9109 0.9176 0.9040 

MTELEKOM 0.4704 0.4695 0.5017 

OTP 1.2715 1.2658 1.6214 

RICHTER 1.0825 1.0771 1.2744 

The results speak for themselves. On the one hand, replacing missing yields with 

zeros leads to estimated coefficients that barely differ from estimates, which were 

obtained by ignoring the existence of weekends and holidays, i.e. by ignoring the 

effect and role of time at which yields were generated. On the other hand, if we con-

sider the estimated β  coefficients that were obtained using spline interpolation, 

especially the ones that indicate a higher level of risk ( 1β ), we can observe that 

these estimates are noticeably different from the values that were calculated using 

either of the first two methods. This implies that changes following weekends and 

other holidays should be paid special attention. In other words, an additional amount 

of risk should be associated with individual investments that tend to diverge from the 

direction of the market as a whole if this divergence is particularly noticeable after 

weekends and other holidays. 

4. Conclusions 

One of the most prevalent characteristics of today’s information society is the 

enormous amounts of data that researchers and analysts have to face. Whereas hav-

ing bigger data sets and longer time series can be beneficial from a certain point of 

view, one should not forget about the downside of such tremendous amounts of in-

formation: the decline in its quality. Data quality is a rather complex category – in 

this study, the phrase is not used in a way it is defined by statistical terminology, but 

it is interpreted from the analyst’s point of view. From the same perspective, a signif-

icant drawback of large data sets and long time series is volatility (statistically speak-

ing, variance or standard deviation). Besides this phenomenon, other difficulties need 
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to be addressed, such as the appearance of outliers and structural frictions. Many of 

these phenomena became typical in today’s information society, one of which has 

been addressed herein. One of the main reasons why non-equidistant time series have 

become more common these days is that analysts now typically rely on multiple data 

providers, as opposed to the past when a single provider was deemed unquestionable 

and therefore reliable.  

The core dilemma that today’s analysts have to face when dealing with such time 

series is whether they should exclude certain observations in order to qualify them 

for more traditional modelling techniques by inevitably losing otherwise available 

information, or if their models should be based on most or all of the available data, 

taking their unstructured nature, in some way, into account. Since inappropriate 

choices of data augmentation techniques may affect the basic characteristics of a 

non-equidistant time series, we have placed significant emphasis on selecting the 

most desirable methods in our analyses. 

The spline interpolation methods discussed herein are relatively straightforward 

and are supported by the vast majority of standard software packages. Therefore, 

their use can be recommended to analysts who wish to avoid losing empirical data 

but also strive to retain the characteristics of the original time series. However, as 

data augmentation results in conclusions that are not solely based upon original data, 

time series augmentation should be used with caution. The extent to which analysts 

should rely on non-empirical data is an ethical question far exceeding the purpose of 

this study. 
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