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Linear factor structures often exist in empirical da-

ta, and they can be mapped by factor analysis. It is, 

however, not straightforward how to measure the 

goodness of a factor analysis solution since its results 

should correspond to various requirements. Instead of 

a unique indicator, several goodness measures can be 

defined that all contribute to the evaluation of the re-

sults.  

This paper aims to find an answer to the question 

whether factor analysis outputs can meet several 

goodness criteria at the same time. Data aggregability 

(measured by the determinant of the correlation matrix 

and the proportion of explained variance) and the ex-

tent of latency (defined by the determinant of the anti-

image correlation matrix, the maximum partial correla-

tion coefficient and the Kaiser–Meyer–Olkin measure 

of sampling adequacy) are studied. According to the 

theoretical and simulation results, it is not possible to 

meet simultaneously these two criteria when the corre-

lation matrices are relatively small. For larger correla-

tion matrices, however, there are linear factor struc-

tures that combine good data aggregability with a high 

extent of latency. 
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Linear factor structures are important in exploring empirical data. Factor analy-

sis may reveal the underlying data patterns by providing information about such 

structures. If nonlinearity within data does not prevail, factor analysis may be appli-

cable for several data analysis purposes. Theoretically, there is a distinction between 

confirmatory factor analysis (that is used to test an existing data model) and explora-

tory factor analysis (aimed at finding latent factors) (Sajtos–Mitev [2007]). Goodness 

measures (for example, the grade of reproducibility of correlations or the size of 

partial correlation coefficients) may be related to the specific purposes of factor 

analyses and contribute to the evaluation of results. This paper focuses on explorato-

ry factor analysis, thus correlation values are of central importance in assessing mod-

el adequacy.  

Exploratory factor analysis methods include common factor analysis and principal 

component analysis (Sajtos–Mitev [2007]), with the major difference that the latter is 

based on spectral decomposition of the (ordinary) correlation matrix, while the other 

applies different algorithms for calculating factors, for example, eigenvalues and ei-

genvectors of reduced correlation matrices are computed (as opposed to the unreduced 

ordinary correlation matrix). The application of a reduced correlation matrix in calcula-

tions (e.g. in principal axis factoring that is a factor analysis algorithm) emphasises the 

distinction between those common and unique factors that are assumed to determine 

measurable data. An exploratory factor solution is “good” when the spectral decompo-

sition results in an uneven distribution of eigenvalues so that the (easily interpretable) 

eigenvectors are strongly correlated with the observable variables, with relatively low 

partial correlations between measurable variables. Consequently, some criteria (associ-

ated with the goodness of factor analysis results) can be formulated based on Pearson 

correlation coefficients and partial correlation values. In the paper, five correlation-

related measures are defined, which are related to data aggregability and the extent of 

factor latency (as goodness criteria). Both of these criteria could be referred to as “a 

measure of sampling adequacy”, but to emphasise different aspects of goodness, the 

two sets of goodness measures of these criteria are analysed separately in the paper.  

The correlation matrix determinant is one of such measures. It is a function of 

matrix values, and although it does not express all “information” inherent in the ma-

trix, its lower values indicate good data aggregability, which refers to an adequate 

factor analysis solution. Since factor analysis solutions are usually associated with 

the eigenvalue-eigenvector decomposition of a matrix, the other measure of data 

aggregability in the paper is the proportion of explained variance (if the first factor is 

retained). For example, in principal component analysis, the correlation matrix can 
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be decomposed, and its eigenvalues correspond to the component variance values, 

thus the proportion of explained variance is the ratio of the variance (eigenvalue) of 

the retained component and total variance. In other factor analysis methods, similar 

calculations can be performed. Data aggregability is better, if the highest eigenvalue 

in the analysis (hence the calculated proportion of explained variance) is higher.  

Factor analysis often aims to find latent variables that are not observable directly. 

Therefore, besides data aggregability, the extent of latency is another important 

component in assessing factor analysis outputs. In the paper, three goodness 

measures (related to partial correlation) are used to assess this criterion.  

Such as Pearson correlation coefficients, partial correlation values also describe a 

linear relationship between two observable variables (while controlling for the ef-

fects of other variables). The presence of latent factors in data may be indicated by a 

linear relationship of observable variables that are characterised by high Pearson 

correlation coefficients (in absolute terms) and low partial correlation values (also in 

absolute terms). Thus, the highest absolute value of partial correlations is considered 

as one of the goodness measures in the paper (lower values indicate better results 

than higher values).  

In factor analysis, the total KMO (Kaiser–Meyer–Olkin) value and the anti-image 

correlation matrix summarise the most important information about partial correla-

tions. For adequate factor analysis outputs, the total KMO value should be above a 

predefined minimum value (see, for example, Kovács [2011]), thus we use the total 

KMO value as another goodness measure in the paper (whose higher values indicate 

better results than lower values). The off-diagonal elements of the anti-image corre-

lation matrix are the negatives of the partial correlation coefficients, while the diago-

nal values represent partial-correlation-related measures of sampling adequacy (vari-

able-related KMO values) for observable variables (Kovács [2014]). If the determi-

nant of the anti-image correlation matrix is high (for example, it is close to one), it 

may also be considered as an indicator of the goodness of a factor analysis solution.  

Contributing to the literature, the paper is aimed at exploring whether these alter-

native goodness criteria can be met simultaneously. Since the theoretical modelling 

of an arbitrary correlation matrix (without any assumption about the size of the ma-

trix or the relationship of the values in the matrix) does not allow a parsimonious 

parametrisation of the model, some simplifications are introduced. For a selected 

small matrix size (three columns), both theoretical and simulation results are calcu-

lated and compared, and for larger correlation matrices the results of the numerical 

computations are demonstrated.  

The paper is organised as follows. The first chapter introduces the simple theoret-

ical assumptions of the paper, while the second summarises the theoretical and simu-

lation results of the goodness measures. The last chapter presents conclusions and 

describes directions for future research.  
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1. The theoretical model 

In exploratory factor analysis, factors can be considered as latent variables that, 

unlike observable variables, cannot be measured or observed (Rencher–Christensen 

[2012]). Interpretable latent variables may underlie not only cross sectional data but 

also time series (Fried–Didelez [2005]). The range of quantitative methods for the 

analysis of latent data structures is wide, for example, conditional dependence mod-

els for observed variables, in terms of latent variables, can also be presented with 

copulas (Krupskii–Joe [2013]).  

The creation of latent variables can be performed by factor analysis with several al-

gorithms, and a general feature of such an analysis is the central importance of (linear) 

Pearson correlation values during calculations. According to some authors (e.g. Hajdu 

[2003]), principal component analysis can be considered as a factor analysis method. 

Despite important similarities, principal component analysis and other factor analysis 

methods exhibit certain differences: in principal component analysis the whole correla-

tion matrix can be reproduced if all components are applied for the reproduction, while, 

for example, in principal axis factoring (which is another factor analysis method) theo-

retically only a reduced correlation matrix can be reproduced (in which the diagonal 

values are lower than one). This difference is connected to the dissimilarity of assump-

tions about the role of unique factors in determining measurable data. Principal axis 

factoring assumes that common and unique factors are uncorrelated, and the diagonal 

values of the reproduced correlation matrix are related solely to the common factors. In 

the case of principal component analysis, however, the effects of common and unique 

factors are modelled together (Kovács [2011]). The naming of eigenvectors also empha-

sises this difference: linear combinations of observable variables are called components 

in principal component analysis, while they are referred to as factors in principal axis 

factoring. In this paper, principal component analysis illustrates factor analysis, thus it is 

worth showing that the results of the principal component analysis and another factor 

analysis method (principal axis factoring) are similar. It can be demonstrated by a sim-

ple example (simulating 1 000 correlation matrices with three normally distributed vari-

ables) that the (Pearson) correlation between the factor and the component (both with 

the highest eigenvalue) is close to one (e.g. if all correlation values in the matrix are 

equal to 0.25, then it is approximately 0.9968 with 0.0035 standard deviation). Simula-

tion is often performed to assess selected features of algorithms (Josse–Husson [2012]), 

Brechmann–Joe [2014]). Its results can be considered reliable because the problem that 

factor analysis results are sensitive to outliers (as described, for example, by Serneels–

Verdonck [2008] and Hubert–Rousseeuw–Verdonck [2009]), cannot be regarded serious 

in calculation, due to the distributional assumptions of this paper. Accordingly, principal 

component analysis (and the spectral decomposition of the ordinary correlation matrix) 

is used in the following to identify latent factors.  
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The size of the correlation matrix is an important parameter in analysis. An ordi-

nary correlation matrix can be quite complex; there is only one theoretical restriction 

on its form: it should be a symmetric, positive semidefinite matrix. Since the com-

plexity of a correlation matrix may increase with its size, first a simple example with 

three observable variables is examined. Even in this case, the requirement that the 

(ordinary) correlation matrix should be positive semidefinite allows several combina-

tions of (Pearson) correlation values.  

Assume, for example, that the correlation matrix (containing Pearson correlation 

values) is defined as follows:  

                                                      

1 2

1 3

2 3

1

1

1

r r

R r r

r r

 
 

  
 
 

.   /1/ 

The former requirement is equivalent to presuming that the correlation matrix has 

only nonnegative eigenvalues. Assuming that the lowest eigenvalue of the correla-

tion matrix in equation /1/ is indicated by 3λ , this eigenvalue can be calculated by 

using the formula:  

                             
3 2 2 2

3 3 1 2 3 1 2 31 1 2 0          λ λ r r r r r r . /2/ 

Theoretically, the solution of equation /2/ could be a complex number (and then 

its interpretation in factor analysis could be problematic). However, given that all 

values in the correlation matrix are real numbers, the eigenvalues of the correlation 

matrix are also real numbers. As a solution of equation /2/, the lowest eigenvalue is 

described as follows:  
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To illustrate that only certain combinations of correlation values are related to a 

positive semidefinite correlation matrix, assume that 1 0r   in the following exam-

ple. In this case, equation /3/ is equivalent to equation /4/:  
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By rearranging equation /4/, the condition for the positive semidefiniteness of the 

correlation matrix is described as:  

                                                          2 2
2 3 1 r r . /5/ 

Equation /5/ describes the possible combinations of correlation values for which 

the correlation matrix is positive semidefinite. Using different assumptions for the 

value of 1r , similar restrictions could be defined that describe a possible range for 

Pearson correlation values in the correlation matrix. Equations /4/ and /5/ can be 

interpreted as meaning that the relationships of Pearson correlation values in an (or-

dinary) correlation matrix should meet some requirements (as a consequence of the 

theoretical positive semidefiniteness of the correlation matrix). 

For the sake of simplicity, it is assumed in our theoretical model that all off-

diagonal elements in the ordinary correlation matrix are non-negative values that are 

equal ( 1 2 3r r r r   ), and 0r  . In this case, the lowest eigenvalue in equation 

/3/ is equal to 1 r since under these simple assumptions the highest eigenvalue of 

the ordinary correlation matrix is equal to 1 2r , and the other two eigenvalues are 

equal to 1 r . Thus, the condition for the positive semidefiniteness of the correla-

tion matrix is met. In the next chapter, the theoretical results associated with good-

ness measures are calculated under these simple assumptions. In the simulation anal-

ysis, these assumptions are relaxed.   

2. Goodness measures in the model  

The goodness of an exploratory factor analysis solution has several aspects, so the 

range of possible goodness measures is also relatively wide. For example, the Barlett’s 

test allows one to evaluate whether the sample correlation matrix differs significantly 

from the identity matrix (Knapp–Swoyer [1967], Hallin–Paindaveine–Verdebout 

[2010]) when all eigenvalues are equal (and thus the relevant eigenvectors cannot be 

interpreted as corresponding to latent factors). Theoretically, subsphericity (equality 

among some of the eigenvalues) could also be tested (Hallin–Paindaveine–Verdebout 

[2010]), and other eigenvalue-related goodness of fit measures (Chen–Robinson 

[1985]), for example, total variance explained by the extracted factors (Hallin–

Paindaveine–Verdebout [2010], Martínez-Torres et al. [2012], Schott [1996]) may also 

contribute to the assessment of factor models. Besides these aspects, interpretability of 

factors is another important question in goodness evaluation (Martínez-Torres et al. 

[2012]) that should be considered when deciding about the number of extracted factors. 
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The selection of relevant factors (or components in a principal component analysis) 

may depend also on the objectives of the analysis (Ferré [1995]). If maximum likeli-

hood parameter estimations can be performed, then, for example, Akaike’s information 

criterion or Bayesian information criterion may be applied when determining the factor 

number (Zhao–Shi [2014]). However, it should be emphasised that not all approaches 

to factor selection are linked to distributional assumptions (Dray [2008]); another pos-

sible method for factor extraction is to retain those factors (or components) whose 

eigenvalues are larger than one (Peres-Neto–Jackson–Somes [2005]). Despite the wide 

range of goodness measures, the comparison of factor analysis results is not simple, 

since factor loadings in different analyses cannot be meaningfully compared  

(Ehrenberg [1962]). 

To compare selected goodness measures, results from a simple theoretical model 

and a simulation analysis are introduced. Note that although factor interpretability is 

an important component of “goodness”, this paper does not analyse the potential 

difficulties in the “naming” of factors.  

Goodness of a factor structure can be evaluated based on ordinary and partial cor-

relations. In the following, these figures are calculated in a theoretical model. Equa-

tion /6/ shows a (symmetric and positive semidefinite) ordinary correlation matrix 

that corresponds to the simple theoretical assumptions of this paper. 

                                                      

1

1
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r r

R r r

r r

  /6/ 

The assumptions result in a nonnegative positive semidefinite matrix. Although 

an exact nonnegative decomposition of a nonnegative positive semidefinite matrix is 

not always available (Sonneveld et al. [2009]), all eigenvalues are nonnegative real 

numbers in our case. The following optimality measures are analysed and compared: 

1. correlation matrix determinant; 2. proportion of the explained variance; 3. highest 

absolute value of the partial correlation; 4. total KMO value; 5. determinant of the 

anti-image correlation matrix.  

The first two refer to data aggregability, while the last three indicate the extent of 

factor latency.  

The correlation matrix determinant has been extensively studied in data analysis 

literature, for example, Olkin [2014] describes its bounds. Under the simple assump-

tions in this paper, the correlation matrix determinant is defined by equation /7/, as 

presented by the literature (e.g. Joe [2006]): 

                                             3 2det 2 3 1    R r r . /7/ 
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Theoretically, the correlation matrix determinant is between zero and one, and the 

determinant of the unity matrix is equal to one. If the correlation matrix is a unity ma-

trix, then all eigenvalues of the correlation matrix are one. In a factor analysis, this case 

would correspond to such a solution where the highest number of observable variables 

(that strongly correlate with a calculated factor) is only one. Thus, if the correlation 

matrix is a unity matrix, factor analysis solutions cannot be optimal. Based on these 

considerations, a lower (close to zero) correlation matrix determinant could indicate a 

better factor structure (that could be related to latent factors in data). In this paper, one of 

the goodness criteria of factor structures is the ordinary correlation matrix determinant: 

the factor structure that belongs to the lowest correlation matrix determinant is the best.  

Total variance is the sum of observed variables in a principal component analysis (if 

the analysis is based on the correlation matrix), and the proportion of the explained 

variance is the ratio of the sum of eigenvalues for retained components to total variance. 

The latter can be considered as another measure of data aggregability. Since there are 

various rules for retaining factors, this goodness measure could be defined as the ratio of 

the highest eigenvalue (of the correlation matrix) to the number of observed variables. 

In our simple theoretical model, this optimality measure is a linear function of the Pear-

son correlation coefficient 
1 2

 
3

  
 
 

r
, thus its optimal value is 1r . Note, it is the 

same optimum that belongs to the criterion of the correlation matrix determinant.  

Another aspect of the goodness of factor structures is associated with the partial 

correlation coefficients between observable variables. Partial correlations measure 

the strength of the relationship of two variables while controlling for the effects of 

other variables. In a good factor model, the partial correlation values are close to zero 

(Kovács [2011]).  

Thus, in an optimal solution, the partial correlation coefficient with the highest 

absolute value would be theoretically zero.  

The KMO measure of sampling adequacy is a partial-correlation-related measure 

that can be calculated for each variable separately or for all variables together. The 

KMO value is presented in equation /8/ (Kovács [2011]). If it is calculated for the 

variables separately (and if pairwise Pearson correlation values and partial correla-

tion coefficients are indicated by ijr  and ijp , respectively), then:  

                                                

2

 

2 2

  

ij
i j

ij ij
i i i j

r

KMO
r p



 






 
.    /8/ 

Theoretically, the maximum value of the KMO measure is one (if the partial cor-

relation values are zero), and a higher KMO value indicates a better database for the 
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analysis (Kovács [2011]). Such as individual KMO values that are calculated for 

each variable separately, the total (database-level) KMO value (that takes all pair-

wise ordinary and partial correlation coefficients into account) can be calculated in a 

way similar to the one in equation /8/, if all pairwise partial and ordinal correlation 

coefficients are considered. For an adequate factor analysis solution, the total KMO 

value should be at least 0.5 (Kovács [2011]). 

The anti-image correlation matrix summarises information about partial correla-

tion coefficients: the diagonal values of the anti-image correlation matrix are the 

KMO measures of sampling adequacy (calculated for separate variables), and the 

off-diagonal elements are the negatives of the pairwise partial correlation coeffi-

cients. Equation /9/ shows the anti-image correlation matrix that corresponds to the 

model assumptions: 

                                                 

  
 

   
 
  

KMO p p

P p KMO p

p p KMO

. /9/ 

Under the assumptions in this paper, the variable-related KMO values are equal 

for each variable and described as follows:  
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2

1

1 1




 

r
KMO

r
.  /10/ 

Equation /10/ shows that the variable-related and the total KMO values are higher 

than 0.5 in the simple theoretical model. Thus, our factor analysis solution is ade-

quate.  

The pairwise partial correlation coefficients are also equal in the simple model 

framework, and can be expressed as a function of the Pearson correlation values, as it 

is described by equation /11/: 

                                                             
1




r
p

r
. /11/ 

As the former equation shows, the partial correlation value in the theoretical 

model may not be equal to zero unless the off-diagonal values of the correlation 

matrix are zero. This result means that in the case of the assumed, relatively small 

correlation matrix, the optimum value for r (the Pearson correlation value in the 

correlation matrix) that is relevant to partial correlations cannot be equal to the opti-

mum value for r associated with the correlation matrix determinant. 
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Although the partial correlation value is an increasing function of the Pearson 

correlation value in the correlation matrix of the theoretical model, it is also worth 

analysing the anti-image matrix that summarises information about all ordinary and 

partial correlation values. As indicated by equation /12/, the determinant of the anti-

image correlation matrix can be expressed as a function of the Pearson correlation 

values (indicated by r in the model), based on equations /10/ and /11/: 

            
 

   

 

   

3
2 23 2

2 3 2 2

1 1
det 2 3

1 1 1 1 1 1

  
       

      

r rr r
P

r r r r
. /12/ 

As far as partial correlation values are concerned, theoretically, the pairwise par-

tial correlation coefficients are zero when the factor structure is optimal, which 

results in KMO values that all equal one. In this case, the anti-image correlation 

matrix was a unity matrix with a determinant that is equal to one. Based on these 

considerations, the determinant of the anti-image correlation matrix can be regarded 

as another goodness criterion: the best factor structure is linked to the highest de-

terminant value.  

After the comparison of the goodness measures in the theoretical model, the re-

search can be extended with a simulation analysis to cover all possible combinations 

of the matrix elements (for the given matrix size) that result in a positive semidefinite 

correlation matrix. As Lewandowski–Kurowicka–Joe [2009] point out, the speed of 

calculations is an important aspect in generating a set of random correlation matrices. 

In this paper, the elements of (symmetric) matrices are generated as uniformly dis-

tributed random variables that are between –1 and 1, and the positive semidefinite 

matrices are considered as simulated correlation matrices. In this simulation method, 

the probability that the simulation results in a positive semidefinite correlation matrix 

decreases with the matrix size. For example, Böhm–Hornik [2014] show that the 

probability of positive definiteness of a symmetric n n  matrix with unit diagonal 

and upper diagonal elements distributed identically and independently with a uni-

form distribution (on –1,1) is approximately 0.61685 for 3n  (and the probability 

is close to zero for 10n ). In our study, the simulation method resulted in 

6 171 random correlation matrices for 3n  (with 10 000 total matrix simulations), 

which are analysed in the following.   

To compare the two data aggregability measures, Figure 1 illustrates their rela-

tionship (if the first factor is retained) for those (2 294) cases in the simulation analy-

sis when the total KMO value is higher than 0.5. Both theoretical and simulation 

results show that these measures are similar, and there are factor structures that meet 

the aggregability criterion (when the correlation matrix determinant is close to zero 

and the proportion of explained variance is close to one).  
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Figure 1. Comparison of the correlation matrix determinant and the proportion of explained variance 
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Source: Here and hereafter, own calculations. 

In the following, the relationship between the correlation matrix determinant rep-

resenting the extent of data aggregability and other (factor-latency-related) goodness 

measures is studied (taking the KMO-related constraint into account).  

Since KMO can be considered as a relatively simple measure of factor latency, it 

is worth studying other factor latency measures to decide whether a factor solution 

meets the two optimality criteria. Figure 2 illustrates the relationship of the absolute 

value of the maximum partial correlation coefficient and the correlation matrix de-

terminant.  

Figure 2. Comparison of the correlation matrix determinant and the absolute value  

of the maximum partial correlation coefficient 
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Figure 2 suggests that for linear factor structures it may be difficult to meet both 

data aggregability and factor-latency-related requirements simultaneously. As equa-

tion /11/ shows, the maximum partial correlation coefficient grows in the theoretical 

model if the Pearson correlation coefficient increases, while the simulation results 

revealed a similar relationship between the maximum partial correlation coefficient 

and the correlation matrix determinant.   

Since the anti-image correlation matrix summarises information about partial cor-

relation coefficients, the determinant of this matrix may also be considered as a 

measure of the extent of factor latency. Figure 3 illustrates the relationship and dif-

ferences between the determinant of the correlation matrix and that of the anti-image 

correlation matrix.  

Figure 3. Comparison of two matrix determinants  
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Note. The simulation results include those cases where the total KMO value is above 0.5. 

According to the theoretical results, the correlation matrix determinant reaches its 

minimum value when the Pearson correlation between variables is equal to one, 

while the determinant of the anti-image correlation matrix reaches its maximum at a 

Pearson correlation value lower than one. Figure 3 also shows there is no factor solu-

tion that is “good enough” regarding both data aggregability and the extent of factor 

latency, if the KMO-related constraint is also taken into account: the anti-image cor-

relation matrix determinant is not close to one if the correlation matrix determinant is 

close to zero.   

Figure 4 illustrates the effect of the KMO-related constraint: if it is not taken into 

account (and the number of the random correlation matrices is 6 171 in the simula-

tion analysis), then it is possible to find linear factor structures for which the anti-

image correlation matrix determinant is close to one while the correlation matrix 
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determinant is close to zero. However, if the KMO-related constraint is considered 

(and the number of the random correlation matrices is 2 294 in the simulation analy-

sis), then no linear factor structures meet both goodness criteria.  

Figure 4. Effect of the KMO-related constraint  

a) Comparison of two matrix determinants  

without the KMO-related constraint 
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b) Comparison of two matrix determinants  

with the KMO-related constraint 
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Since the KMO measure of sampling adequacy can be considered as an important 

measure of the extent of factor latency, one can conclude that there are no factor 

structures that meet both criteria (data aggregability and the extent of factor latency) 

in the case of a relatively small correlation matrix (having three columns). The re-

sults for partial correlation with maximum absolute value also support this conclu-

sion. 

To explore the effects of relaxing the assumption about matrix size, correlation 

matrices with a simple structure are analysed: such as in equation /6/, it is presumed 

that all Pearson correlation values in a correlation matrix are equal. In this case, all 

off-diagonal values in the anti-image correlation matrix and the individual 

KMO values (the diagonal values of the anti-image correlation matrix) are also 

equal. Figure 5 illustrates the relationship between the (ordinary) correlation matrix 

determinant and the anti-image correlation matrix determinant for different Pearson 

correlation values (in the ordinary correlation matrix) and for different matrix sizes.  

In Figure 5, the (Pearson) correlation values increase from 0.01 to 0.99 for each 

matrix size. If the correlation matrix size (indicated by n) is bigger, then the relation-

ship of the two matrix determinants changes, but in none of the examined cases is the 

determinant of the anti-image correlation matrix close to one.  
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Figure 5. Effect of the correlation matrix size 
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Note. In the figure, n indicates the size of the correlation matrix. 

Figure 6. Relationship between partial correlation and KMO values 
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Note. In the figure, r indicates the Pearson correlation value. 

Figure 6 presents the relationship between partial correlation and KMO values if the 

matrix size increases from 3 to 250 columns (variables), for two different Pearson corre-

lation values. It indicates that if the correlation matrix is relatively large, then the partial 

correlation values are close to zero, while the KMO values are around one. For example, 

if the Pearson correlation values in the (ordinary) correlation matrix are all equal to 0.99, 

then in a large correlation matrix (e.g. with 250 variables) the partial correlation values 

 n = 3 n = 5 n = 25 

r = 0.5 r = 0.99 
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are nearly zero, and the KMO values are close to one. This example shows a correlation 

matrix solution that is appropriate for meeting both criteria. The result also suggests that 

if the extent of latency should be expressed with one value, then this could be the de-

terminant of a modified version of the anti-image correlation matrix (instead of the de-

terminant of the frequently analysed anti-image correlation matrix).  

3. Conclusions 

In parallel with the development of information technologies, the amount of em-

pirically analysable data has grown over the last decades, and the need for advanced 

pattern recognition techniques has increased, too. In data, linear factor structures may 

be present, and latent factors can be identified by various factor analysis methods. 

The evaluation of the goodness of such factor structures is thus a compelling issue of 

research. This paper aims to contribute to the literature by examining whether linear 

factor structures can meet multiple requirements simultaneously.  

Factor analysis methods are connected to the measurement of the strength of line-

ar relationships between observable variables. The ordinary correlation matrix that 

contains information about such relationships can be quite complex since there are 

only two theoretical restrictions on its form: it should be symmetric and positive 

semidefinite. Partly because of the complexity of correlation matrices, various good-

ness measures can be defined for the evaluation of factor analysis results. This paper 

has examined two criteria: data aggregability (measured by the determinant of the 

(ordinary) correlation matrix and the proportion of explained variance) and the extent 

of factor latency (defined by the total KMO value, the maximum partial correlation 

coefficient and the determinant of the anti-image correlation matrix).  

Note that in the paper goodness was analysed only from a mathematical point of 

view (whether goodness criteria can be met simultaneously); in practical applica-

tions, however, other aspects (for example, the possibility of “naming” the factors) 

may also be considered when evaluating a factor structure.  

The paper contributes to the literature with the concurrent examination of two 

goodness criteria. First, a relatively small correlation matrix (having three columns) 

was analysed with theoretical modelling and simulation analysis. The results of both 

methods show that the defined criteria cannot be met simultaneously. This outcome 

can be associated with the relationship between the Pearson correlation values (be-

tween observable variables) and the pairwise partial correlation coefficients: accord-

ing to the theoretical model, increase in the pairwise Pearson correlation values is 

accompanied by the growth of the partial correlation coefficients. The paper also 
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suggests that if the correlation matrix is large, the increase in the extent of partial 

correlations is less significant, and one can identify factor structures that meet both 

data aggregability and latency criteria (measured with the value of partial correla-

tions). The results may also be interpreted in such a way that if the extent of latency 

should be expressed with one value, then it could be the determinant of a modified 

version of the anti-image correlation matrix (instead of the determinant of the fre-

quently analysed anti-image correlation matrix).  

The goodness of linear factor structures has several aspects whose further analysis 

can be subject of future research. The model presented in this paper may be extended, 

for example, by modifying the definition of the goodness criteria, or by formulating a 

more general set of assumptions for the elements in the ordinary correlation matrix.  
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