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Small Area Estimation

Official surveys are designed to obtain reliable estimates in planned
domains.

For example, The Spanish Living Condition Survey (SLCS) has
sufficiently large sample sizes in the autonomous communities (planned
domains).

Then, thedirect estimatorshave acceptably small mean squared errors in
the autonomous communities .

However, the SLCS sample sizes are too small within provinces
(unplanned domainsor small areas) and therefore the direct estimates are
not reliable in these domains.

Small Area Estimationis a branch of Statistics that gives procedures to
improve the direct estimates in unplanned domains.

We introduce small area estimators based on
Multivariate area-level mixed models.
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Multivariate Fay-Herriot models

LetU be a finite population partitioned intoD domainsU1, . . . , UD.

Let µd = (µd1, . . . µdR)
′ be a vector of characteristics of interest in the

domaind.

Let yd = (yd1, . . . ydR)
′ be a vector of direct estimators ofµd.

Themultivariate Fay-Herriot modelis defined in two stages.

Thesampling modelis

yd = µd + ed, d = 1, . . . , D, (1)

the vectorsed ∼ N (0, Ved) are independent,
theR ×R covariance matricesVed are known.

Thelinking modelassumes that theµdr ’s are linearly related to
xdr = (xdr1, . . . , xdrpr

) with pr explanatory variables.

xd = diag(xd1, . . . , xdR)R×p with p =
∑R

r=1 pr.

β = (β′
1, . . . , β

′
r)

′
p×1.
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Multivariate Fay-Herriot models

González-Manteiga et al. (2008b) considered the linking model

µd = xdβ + 1Rvd, vd
ind∼ N1(0, σ

2
v), d = 1, . . . , D, (2)

where1n is then× 1 vector with all elements equal to 1.

We introduce amultivariate Fay-Herriot modelby assuming (1) and
substituting the condition (2) by the more realistic linking model

µd = xdβ + ud, ud
ind∼ NR(0, Vud), d = 1, . . . , D, (3)

the vectorsud’s are independent of the vectorsed’s.
TheR×R covariance matricesVud depend onm unknown

parameters,θ1, . . . , θm, with 1 ≤ m ≤ R(R−1)
2 +R.
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Multivariate Fay-Herriot models

We consider four particularizations of model (3).

Model 0is the product of independent marginal models that assumes (1),
(3) and takes

Ved = diag
1≤r≤R

(σ2
edr), Vud

= diag
1≤r≤R

(σ2
ur), d = 1, . . . , D, (4)

the sampling error variancesσ2
edr ’s are known,

m = R andθr = σ2
ur, r = 1, . . . , R.

The components ofed andud are independent under Model 0.

Model 1assumes (1) and (3), with a known but not necessarily diagonal
matrixVe, and independent components ofud, i.e.

Vud
= diag

1≤r≤R

(σ2
ur), d = 1, . . . , D, (5)

m = R andθr = σ2
ur, r = 1, . . . , R.

Model 0 is Model 1 withVe diagonal.
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Multivariate Fay-Herriot models

Model 2assumes (1), (3) with AR(1)-correlatedud, i.e.

Vud = σ2
uΩd(ρ), Ωd(ρ) =

1

1− ρ2




1 ρ · · · ρR−1

ρ 1 · · · ρR−2

...
...

...

ρR−1 ρR−2 · · · 1




,

(6)

m = 2, θ1 = σ2
u, θ2 = ρ.

Model 3assumes (1), (3) with HAR(1)-correlatedud, i.e.

udr = ρudr−1+adr, ud0 ∼ N
(
0, σ2

0

)
, adr

ind∼ N
(
0, σ2

r

)
, r = 1, . . . , R,

(7)

σ2
0 = 1,

ud0, adr, r = 1, . . . , R, are independent,

m = R+ 1 andθ1 = σ2
1 , . . . , θR = σ2

R, θR+1 = ρ.
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Application to real data

We are interested in estimating small area poverty proportions and gaps
by using data from the 2006 Spanish Living Condition Survey (SLCS).

We calculate EBLUPs based on multivariate Fay-Herriot models.

The target domains are the 52 Spanish provinces crossed by sex
(D = 104).

The target indicators are the poverty proportion (α = 0) and gap (α = 1),

Ȳαd =
1

Nd

Nd∑

j=1

yαdj , yαdj =

(
z − Edj

z

)α

I(Edj < z),

z is the poverty line and
Edj is the equivalised net income of individualj within domaind,
j = 1, . . . , Nd, d = 1, . . . , D.

◮ s is the global sample andsd is the sample of domaind
◮ The sample sizes aren andnd respectively, so that

◮ s = ∪D
d=1sd andn =

∑D

d=1 nd.
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Application to real data

Thedirect estimatorof the domaintotalYdr =
∑Nd

j=1 ydrj is

Ŷ dir
dr =

∑

j∈sd

wdj ydrj ,

wherewdj ’s are the official calibrated sampling weights.

The estimated domain size iŝNdir
d =

∑
j∈sd

wdj .

A direct estimatorof the domainmeanȲdr is ȳdr = Ŷ dir
dr /N̂dir

d .

Thēydr ’s are the responses in the area-level model.

The design-based covariances of these estimators are approximated by

ĉovπ(Ŷ
dir
dr1

, Ŷ dir
dr2

) =
∑

j∈sd

wdj(wdj − 1)(ydr1j − ȳdr1)(ydr2j − ȳdr2),

σπ,d,r1,r2 = ĉovπ(ȳdr1 , ȳdr2) = ĉovπ(Ŷ
dir
dr1

, Ŷ dir
dr2

)/N̂2
d .

We take theσπ,d,r1,r2 ’s as the known elements of the matrixVed in the
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Application to real data

The availableauxiliary variablesare the domain proportions of people in
the categories of the following classification variables:

Age (age1: ≤ 15, age2: 16− 24, age3: 25− 49, age4: 50− 64,
age5: ≥ 65),
Education (edu0: less than primary,edu1: primary,
edu2: secondary,edu3: university),
Citizenship (cit1: Spanish,cit2: not Spanish),
Labor situation (lab0: ≤ 15, lab1: employed,lab2: unemployed,
lab3: inactive).

As the proportions of people in the categories of a given variable sum up
to one, we take the reference categories out of the auxiliarydata file.

The reference categories areage5, edu3, cit2 andlab3.

We present two applications.

Thefirst applicationjointly estimates 2006 poverty proportions and gaps
for provinces crossed by sex.

Thesecond applicationjointly estimates 2005 and 2006 poverty
proportions for provinces crossed by sex.
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Application 1

For jointly estimating 2006 poverty proportions (α = 0) and gaps
(α = 1), we fit Model 3 to a subset of auxiliary variables.

Variables constant age1 age2 edu1 cit1 lab2
β1 -0.70357 0.95490 1.45541 0.74745 0.30873 1.50050

p-value 0.00000 0.00066 0.00165 0.00000 0.00137 0.00006
Table 1. Regression parameters andp-values for Model 3,α = 0, 2006.

Variables constant edu0 edu1 edu2 cit1 lab1
β2 -0.37458 0.97049 0.34255 0.16551 0.152031 -0.06384

p-value 0.00001 0.00000 0.00001 0.11197 0.00104 0.02502
Table 2. Regression parameters andp-values for Model 3,α = 1, 2006.

By observing the signs of the regression parameters we conclude that
provinces having larger proportions of population in categoriesage1,
age2, edu1, cit1 andlab2 have greater poverty proportion.

On the other side, provinces having larger proportions of population in
categoriesedu0, edu1, edu2, andcit1 and smaller proportions of
population in the categorylab1 have greater poverty gaps.
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Application 1

The estimates of the variance component parameters areσ̂2
u1 = 0.00138,

σ̂2
u2 = 0.00037 andρ̂ = 0.01859.

We testH0 : σ2
u1 = σ2

u2. The test statistics is

T12 =
σ̂2
u1 − σ̂2

u2√
ν11 + ν22 − 2ν12

= 3.34588,

νij , i, j = 1, 2, 3 are the elements of the inverse of the REML

Fisher information matrix of Model 3 evaluated atθ̂ = (σ̂2
1 , σ̂

2
2 , ρ̂).

As T12 ∼
asym

N(0, 1) underH0, thep-value is 0.00082.

We conclude that random effects variances are different andwe
prefer Model 3 instead of Model 2.

We also testH0 : ρ = 0. The test statistics isTρ = ρ̂√
ν33

= 1.96464.

As Tρ ∼
asym

N(0, 1) underH0, thep-value is 0.049456.

We conclude that both components (poverty proportion and gap) are
positively correlated and we prefer Model 3 instead of Model1.
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Application 1
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Figure 1. Poverty proportions (top) and gaps (bottom) for men (left) and
women (right) in Spanish provinces during 2006.
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Application 1
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Figure 2. Root-MSEs of direct and EBLUP (under Model 3) estimators of
poverty proportions (left) and gaps (right) in Spanish provinces during 2006.
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Application 2

For jointly estimating 2005 and 2006 poverty proportions (α = 0), we fit
Model 3 to a subset of auxiliary variables.

Variables constant age1 age2 edu1 cit1 lab2

β -0.65428 0.69780 2.38240 0.71074 0.25924 0.71268

p-value 0.00010 0.06540 0.00049 0.00000 0.08960 0.15129

Table 3. Regression parameters andp-values for Model 3,α = 0, 2005.

Variables constant age1 age2 edu1 cit1 lab2
β -0.75278 0.88497 1.89752 0.79734 0.31471 2.04460

p-value 0.00000 0.00609 0.00047 0.00000 0.00414 0.00000
Table 4. Regression parameters andp-values for Model 3,α = 0, 2006.

By observing the signs of the regression parameters we conclude that
provinces having larger proportions of population in categoriesage1,
age2, edu1, cit1 andlab2 have greater poverty proportion in 2005 and
2006.
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Application 2

The estimates of the variance component parameters areσ̂2
u1 = 0.00256,

σ̂2
u2 = 0.00193 andρ̂ = 0.02105.

We testH0 : σ2
u1 = σ2

u2. The test statistics is

T12 =
σ̂2
u1 − σ̂2

u2√
ν11 + ν22 − 2ν12

= 1.0756,

whereνij , i, j = 1, 2, 3 are the elements of the inverse of the REML

Fisher information matrix of Model 3 evaluated atθ̂ = (σ̂2
1 , σ̂

2
2 , ρ̂).

As T12 ∼
asym

N(0, 1) underH0, thep-value is 0.28208.

We cannot conclude that random effects variances are different and
we prefer Model 2 instead of Model 3.

Therefore, we fit Model 2 to the subset of auxiliary variables.
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Application 2

Variables constant age1 age2 edu1 cit1 lab2
β2005 -0.53822 0.67365 1.74785 0.60288 0.23672 0.99025
p-value 0.00040 0.03876 0.00209 0.00000 0.08998 0.02351

β2006 -0.74083 0.90128 1.69006 0.68294 0.37468 1.78575
p-value 0.00000 0.00595 0.00127 0.00000 0.00163 0.00007

Table 5. Regression parameters andp-values for Model 2 andα = 0.

We testH0 : ρ = 0 under model 2. The test statistics is

Tρ =
ρ̂

√
ν22

= 16.72633,

νij , i, j = 1, 2 are the elements of the inverse of the REML Fisher

information matrix of Model 2 evaluated atθ̂ = (σ̂2, ρ̂).

As Tρ ∼
asym

N(0, 1) underH0, thep-value is 0.00.

We conclude that both components (2005 and 2006 poverty proportions)
are positively correlated and we prefer Model 2 instead of Model 1.
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Application 2
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Figure 3. Poverty proportions in 2005 (top) and 2006 (bottom) for men (left)
and women (right) in Spanish provinces during 2006.
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Application 2
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Figure 4. Root-MSEs of direct and EBLUP (under Model 2) estimators of
poverty proportions for 2006 (left) and 2005 (right) in Spanish provinces.
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