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Multinomial logistic regression (MLR) with complex survey

@ Let Y be the response variable with d + 1 categories

e The population is divided in H strata (h=1,..., H)
o In each stratum h, there are ny, clusters (i =1, ..., np)
o Cluster i of the stratum h has my; units

T P
® Yhjj = (}/hijly ----,yh;j,d+1) = classification vectors

o If ypjjr =1 and ypjs =0 forse{l,...,d+1} —{r}, the unit j selected
from the cluster i of the stratum h falls in the category r.

e The response variable Y depends on k explanatory variables

Xhij = (Xhijlx vy X/-,,'jk)T

(Explanatory variables for the unit j in the cluster i of the stratum h)
e wp; = Sampling weight from the cluster i of the stratum h.
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Multinomial logistic regression (MLR) with complex survey

@ The expectation of the element r, Y-, of
Yhij = (Yhijly ceny Yh,'j’d_f_l)T, is given by

exp(x];6,)

e (@) = | 1 T P8

r=d+1

L+ 325 explx)05)

o Br=(B1rBi) €RK r=1,..d and Bys; =(0,..,0)7 .

e 0={8=@B.807. 8= - bu) €RK
j=1,..d =RI¥*.

@ We shall assume
Thijr B) =mhir (B), J=1,...,mp,

(All the individuals in the cluster i of the stratum h have the the
same explanatory variables xp; = (xnj1, ....,xh,-k)T )
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Pseudo Maximum likelihood estimator

P Mpj Mpj Mpj T Y P
;
o Yy = E Yhij= E Yhij1, o E Yaijde1 | = YVhits o Yhid+1)

(The number of units in the cluster i of the stratum h )
@ We define the following theoretical probability vector, 7 (3), by

T WinyMin WHnMHn T T
(i 1(B),. .., = [ (B), . M ] (B),. .~ ] (8))
with

H np
T = Z WhjMp;j
h=1 i=1

@ We shall also consider the non-parametric probability vector

oT
P= (V)T

1 ST ST ST ST
T
= ;(WllYllr cey W1”1Y1n1' . WHlYHlv ceny WH”HYHnH) .
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Pseudo Maximum likelihood estimator

@ The Kullback-Leibler divergence between the probability vectors p
and 7 () is given by

d+1

ths
d : = i is
k-1 @B, 7 () = Zlgwh szyh )
=K-L(0)
e Being
H np
LB) =D whilogm ] (B)Tn
h=1 i=1

the Pseudo Loglikelihood

@ The Pseudo Maximum Likelihood Estimator of parameter 3 can
be defined by

Bp =arg min di— (B 7 (3)).
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Pseudo Minimum Phi-divergence Estimator

@ Phi-divergence measures,

d+1
dy P, 7 (B)) = ZZWh,mh/ Zﬂh/s B ¢ (mh 7}[/:’5 (B))

where ¢ € ®* is the class of all convex functions ¢ (x), defined for
x> 0,suchthatatx=1,¢ (1) =0, ¢"(1) >0, and at x =0,
04 (0/0) =0 and 0¢ (p/0) = liMy_y00 ¢ (1) / u.

Definition

We consider the MLR model with complex survey. The Pseudo Minimum
Phi-divergence Estimator of parameter 3 is defined as

Byp = argmindy (.7 (3)).
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Pseudo Minimum Phi-divergence Estimator

Theorem

Let 3¢’p the pseudo minimum phi-divergence estimator of parameter
H

B, n= z np, the total of clusters in all the strata of the sample and n} an
h=1

unknown proportion obtained as lim,_,o “* =5}, h=1, ..., H. Then we

have

VByp = Bo) = N (Oa, H™ (Bo) G (8o) H™" (Bo))

(H (B) = Fisher information matrix)
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Design effect matrix and design effect in the MLR model

o Let B¢ denote the minimum phi-divergence estimator of 3 for
multinomial sampling. It can be seen that

lim V[vAB,) = H™ ().

n— oo

@ The “design effect matrix” for the MLR with sample survey design
is defined as

nli_)mooV[\/ﬁ/Bd)lP]v_l[\/ﬁ/Bd)] =H™" (Bo) G (Bo)

@ The "design effect”, for the MLR model with sample survey design
is defined as

v(By) = trace (H™ (B)G(By)
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Design effect matrix and design effect in the MLR model

@ The design effect is specially interesting for models such that

E[?hi] = MpThi (BO) and V[?h;] = th mhA(ﬂ'h,' (BO)), (1)
Vm, = 14 pj(my — 1),

e vy, = Parameter of overdispersion

° p% = Intra-cluster correlation coefficient

o Clusters have equal size in the strata, my; = mp, h=1,..., H,
i=1,.. np.

o Examples of distributions of Yy verifying (1) are the so-called

“overdispersed multinomial distributions” (Dirictlet-multinomial,
Random-clumped, m-inflated distribution)

o After obtaining the pseudo minimum phi-divergence estimator of
parameter 3, B¢,P, the interest will be in estimating the intra-cluster
correlation coefficient as well as the parameter of overdispersion.

E. Castilla, N. Martin and L. Pardo MDEs in Logistic R under Complex Designs Budapest, October 21, 2016 10 / 18



Design effect matrix and design effect

Theorem

Assume wpj = wp, i =1, ..., n. An estimator of the parameter of
overdispersion based on the “linearization method of Binder” s

=il

—~ = 1 < * [

Vi, (By,p) = Jtrace (Z mpA(7h:(B4.p)) ® Xhith,-)
i=1

i=1

x > (vhiBy,p) = Vn(By.p)) (vi(By.p) —Vn(By p)) T)

Nh
with vpi (B4 p) = 1}, (B) ® xpi and Vp(By p) = nlh Zth (By,p), and an
k=1

estimator of the intra-cluster correlation coefficient is
Vmy(Bgp) — 1

Ph(ﬁ¢,P) = mp — 1
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Design effect matrix and design effect

Theorem

Let ,@i p the pseudo minimum phi-divergence estimate of parameter (3 for
a multinomial logistic regression model with “overdispersed multinomial
distribution”. An estimator of the parameter of overdispersion based
on the “method of moments” s given by

o~ = 2
2o X (Vhis — mam pis(B,p))

-~ 1
Vi, (B ,P) == =
it nhd i=1 s=1 Mmpm his(Bqﬁ,P)

and a estimator of the intra-cluster correlation coefficient based on the
“method of moments” , is

Vmy By,p) — 1

ph(ﬁqﬁ,P) = mp — 1

E. Castilla, N. Martin and L. Pardo MDEs in Logistic R under Complex Designs Budapest, October 21, 2016 12 / 18



Simulation study: Minimum phi-divergence estimators

@ The pseudo minimum phi-divergence estimator
= nds (5.
By,p = arg min d (p, 7 (B))

d+1 -
ds (b, 7 (8)) = ZZ whitmhi 27 his (B) ¢ (#@) |

=1 i=1

@ Divergence measure of Cressie-Read

1(11+1) [x* —x—2(x-1)], 2eR—-{-1,0}
¢, (x) =1 xlogx—x+1, 1=0

—logx+x—1 A=—

e .€{0,51,15,2,25}
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Experiment of simulation

o Y; = Described by Dirichlet-multinomial (DM), Random-clumped
(RC), m-inflated (m-1))
e H =1 (One stratum). Different number of clusters in the stratum
and different size in each cluster
e d =3 (Four classes) and K = 4.
@ The true probability associated with the cluster i is
7 (Bo) = (i1 (Bo) . wi2 (Bo) . wi3 (Bo) . wia (Bo)) ", where
expix/ 87}
S explx] B2}
B=(3.8].8;.8))", with 8] =(~0.3,-0.1,0.1,0.2),
Bl =(0.2,-0.2,-0.2,0.1), B =(-0.1,0.3,-0.3,0.1),
BI =(0,0,0,0)
xi YN %), p=@1,-2157, T =diag(0,25,25, 25}, i =
1, e,

W (,30) =
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Scenarios

@ We consider 5 different scenarios

o Scenario 1: n =60, m =21, p? € {0.05/}}°;, DM, RC and m-I
distributions
Scenario 2: n € {101}151, m =21, p© = 0.25, RC distribution

2
Scenario 3: n=60, m € {10/}1121, p2 = 0.25, RC distribution
Scenario 4: n=160, m e {10i}}21, p? =0.75, RC distribution
Scenario 5: n =20, m e {10i}}2,, p?

= 0.25, RC distribution
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Conclusions for parameteres (Mean square error)

Dirichlet Multinomial distribution
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Conclusions for intra-cluster correlation coeficient (Mean

square error)

@ The best estimator of p2 with Binder's method is obtained with
A=2/3

m-inflated distribution
T T T

RMSE(p) with method of Binder
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