# Consistent estimation at person-level and household-level

#### Anne Konrad, Jan Pablo Burgard, Ralf Münnich

#### Conference of European Statistics Stakeholders 2016 Budapest

University Trier

October 21, 2016

# Motivation

- Many household surveys are based on cluster sampling: at the first stage the households are sampled, at the second stage all persons within a household.
- Allows the simultaneous estimation at the person- and at the household-level.
- In practice, integrated weighting, which substitutes individual auxiliary variables with (aggregated or) mean values, is often used.
- Eurostat recommends integrated weighting for EU-SILC (European Commission, 2013).

## Research questions

- 1) Is there a price to pay to enforce consistent estimates due to the restriction of unique weights?
- 2) Does an alternative weighting strategy exists which is capable of both, ensuring consistent estimates at both levels and allowing for different weights for persons within the same household?

#### Lehrstuhl für Wirtschafts- und Sozialstatistik

#### Table of contents

#### Motivation

Research question 1 Simulation study I

Research question 2 Simulation study II

Motivation Research question 1 Research question 2 Conclusion

Simulation study I

Lehrstuhl für Wirtschafts- und Sozialstatistik

### Table of contents

Motivation

Research question 1 Simulation study I

Research question 2 Simulation study I

Simulation study I

#### Lehrstuhl für Wirtschafts- und Sozialstatistik

# Usual person-level GREG estimator

The GREG estimator for totals is given by:

$$\hat{T}_{Y,GREG} = \hat{T}_{Y,HT} + \hat{\mathbf{B}}^{\mathsf{T}}(\mathbf{T}_{\mathsf{x}} - \hat{\mathbf{T}}_{\mathsf{x},\mathsf{HT}})$$
(1)

with  $\hat{\mathbf{B}} = (\mathbf{X}^{\mathsf{T}} \mathbf{\Pi}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}} \mathbf{\Pi}^{-1} \mathbf{Y} \ (p \times 1)$  as regression coefficient.

Notation:

- **Y** : variable of interest  $(n \times 1)$
- **X** : auxiliary variables  $(n \times p)$
- ${f T}_{{f x}}$  : known totals of the auxiliaries (p imes 1)
- $\mathbf{\hat{T}}_{x,HT}$ : estimated totals of the auxiliaries ( $p \times 1$ )
- **П** : diagonal matrix with inclusion probabilities  $\pi_i$  ( $n \times n$ )

# Integrated GREG estimator

Lemaître, G., Dufour, J. (1987): Substitution of the individual auxiliaries with their **constructed mean values** 

The integrated GREG estimator for totals is given by:

$$\hat{T}_{Y,int} = \hat{T}_{Y,HT} + \mathbf{B}_{int}^{\mathsf{T}}(\mathsf{T}_{\mathsf{x}} - \hat{\mathsf{T}}_{\mathsf{x},\mathsf{HT}})$$
(2)

with  $\hat{\mathbf{B}}_{int} = (\mathbf{D}^{\mathsf{T}} \mathbf{\Pi}^{-1} \mathbf{D})^{-1} \mathbf{D}^{\mathsf{T}} \mathbf{\Pi}^{-1} \mathbf{Y} \ (p \times 1)$  as regression coefficient.

Further notation:

**D**: mean values of auxiliary variables  $(n \times p)$ 

Simulation study I

#### Lehrstuhl für Wirtschafts- und Sozialstatistik

# Simulation study: person-level vs. integrated GREG estimator

- Data: RIFOSS population of Rhineland-Palatinate (1,881,167 households and 4,225,729 persons)
- Sampling design: SRS of households of n = 1500
- <u>Auxiliaries:</u> sex, age classes, family status

Person-level GREG

8

FD3

FD4

### Regression coefficients



#### Integrated GREG

## Distribution of weights



 $\Rightarrow$  Integrated weights have a significantly higher range!

October 21, 2016 | Anne Konrad | 9 (14) Consistent estimation

## Estimation results

|          | Person-level GREG | Integrated GREG |  |
|----------|-------------------|-----------------|--|
| OCC_1    | 26,859            | 26,723          |  |
| OCC_2    | 11,978            | 11,937          |  |
| OCC_3    | 11,580            | 11,605          |  |
| OCC_4    | 26,572            | 26,566          |  |
| SELF     | 7,972             | 7,978           |  |
| INC      | 121,242,544       | 120,915,970     |  |
| UNEMP    | 7,179,708         | 7,181,217       |  |
| PEN      | 39,823,873        | 39,970,062      |  |
| PEK_HHG1 | 62,412,942        | 56,614,498      |  |
| PEK_HHG2 | 101,730,314       | 99,704,938      |  |
| PEK_HHG3 | 88,774,374        | 89,260,997      |  |
| PEK_HHG4 | 87,359,338        | 85,215,552      |  |
| PEK_HHG5 | 73,271,371        | 64,975,914      |  |
| PEK_FST1 | 57,590,242        | 57,291,391      |  |
| PEK_FST2 | 99,925,949        | 99,547,440      |  |
| PEK_FST3 | 24,262,527        | 24,304,438      |  |
| PEK_FST4 | 39,526,247        | 39,722,635      |  |

#### Table: MC standard errors

Motivation Research question 1 Research question 2 Conclusion

Simulation study II

#### Lehrstuhl für Wirtschafts- und Sozialstatistik

#### Table of contents

Motivation

Research question 1 Simulation study

Research question 2 Simulation study II

Motivation Research question 1 Research question 2 Conclusion

# Alternative weighting approach

**Idea**: Intern consistency is solely required for common variables at the person- and household-level. Hence, utilize this <u>common variables</u> as additional auxiliaries in the calibration.

Modify the usual person-level GREG estimator and add the common variables matrix **C**  $(n \times p)$ :

$$\hat{\mathcal{T}}_{y,\textit{Alternative}} = \hat{\mathcal{T}}_{y,\textit{HT}} + \hat{\boldsymbol{B}}_{\boldsymbol{x}}^{\mathsf{T}}(\boldsymbol{\mathsf{T}}_{\boldsymbol{x}} - \boldsymbol{\hat{\mathsf{T}}}_{\boldsymbol{x},\textit{HT}}) + \hat{\boldsymbol{B}}_{\boldsymbol{c}}^{\mathsf{T}}(\boldsymbol{\hat{\mathsf{T}}}_{\boldsymbol{c}} - \boldsymbol{\hat{\mathsf{T}}}_{\boldsymbol{c},\textit{HT}})$$

# Distribution of the weights

|                    | Mean  | SD   | Min    | Max    | Range  |
|--------------------|-------|------|--------|--------|--------|
| Integrative GREG   | 66.69 | 4.90 | 21.58  | 116.98 | 95.04  |
| Alternative GREG*  | 66.69 | 3.29 | -37.00 | 172.07 | 209.07 |
| Alternative GREG** | 66.69 | 3.28 | 20.83  | 114.24 | 93.41  |

Table: Summary Statistics (3,365,765 observations)

- \* Improved model for common variables
- \*\* Stratification, improved model

## Estimation results

|          | Integrated GREG | Alternative GREG |
|----------|-----------------|------------------|
| OCC_1    | 26,723          | 13,328           |
| OCC_2    | 11,937          | 11,996           |
| OCC_3    | 11.605          | 11,591           |
| OCC_4    | 26.566          | 16,293           |
| SELF     | 7,978           | 7,970            |
| INC      | 120,915,970     | 91,355,871       |
| UNEMP    | 7,181,217       | 7,085,061        |
| PEN      | 39,970,062      | 39,048,784       |
| PEK_HHG1 | 56,614,498      | 51,470,551       |
| PEK_HHG2 | 99,704,938      | 76,115,807       |
| PEK_HHG3 | 89,260,997      | 62,342,796       |
| PEK_HHG4 | 85,215,552      | 56,442,895       |
| PEK_HHG5 | 64,975,914      | 45,234,234       |
| PEK_FST1 | 57,291,391      | 52,290,368       |
| PEK_FST2 | 99,547,440      | 88,224,743       |
| PEK_FST3 | 24,304,438      | 24,245,146       |
| PEK_FST4 | 39,722,635      | 39,404,944       |

#### Table: MC standard errors

#### Lehrstuhl für Wirtschafts- und Sozialstatistik

#### Table of contents

Motivation

Research question 1 Simulation study

Research question 2 Simulation study I

## Conclusion

1) Yes, there is a price to pay for consistency in the integrated weighting approach due to unique weights:

- Higher variances of the auxiliaries and the regression coefficients.
- Higher deviation from sampling weights.

2) Yes, our alternative weighting approach ensures consistent estimates for the common variables without unique weights.

- The spread of the weights is comparable with the integrated weights, however the variation is significant smaller.
- More efficient estimation results.
- More flexible in model selection and independence of the household size.

### Thank you for your attention!

This talk was developed within the project Research innovations for official and survey statistics (RIFOSS), funded by the German Statistical Office.

#### Literature

Bethlehem, J.G., Keller, W. (1987): Linear Weighting of Sample Survey data, Journal of official statistics, 3(2), 141-153.

European Commission (2013): Methodological guidelines and description of EU-SILC target variables, Eurostat, Directorate F: Social Statistics, Doc-SILC065 (2014 operation), zuletzt abgerufen am 28.04.2014.

Lemaître, G., Dufour, J. (1987): An integrated method for weighting persons and families, Survey Methodology, 13, 199-207.

Nieuwenbroek, N. (1993): An integrated method for weighting characteristics of persons and households using the linear regression estimator, Netherlands Central Bureau of Statistics.

Renssen, R.H., Nieuwenbroek, N.J. (1997): Aligning estimates for common variables in two or more sample surveys, Journal of the American Statistical Association, 92, 368-374.

Särndal, C. Swensson, B., Wretman, J. (1992): Model Assisted Survey Sampling, New York: Springer-Verlag.

Steel D.G., Clark, R.G. (2007): Person-level and household-level regression estimation in household surveys, Survey Methodology, 33(1), 51-60.

van den Brakel, J. (2013): Sampling and estimation techniques for household panels, Discussion Paper, 15, Statistics Netherlands.

Verma, V., Betti, G., Ghellini, G. (2006): Cross-sectional and longitudinal weighting in a rotational household panel: applications to EU-SILC, Working Papers, 67, Dipartimento di Metodi Quantitativi, Università di Siena.