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This study examined the Zagros region by 
combining two earthquake forecasting 
methods: moment ratio (MR) and relative 
intensity (RI). The proposed combined 
moment ratio (CMR) method used a unified 
catalogue of earthquakes with magnitudes 
𝑀𝑀𝑤𝑤  ≥ 3.0 that occurred during 1980–2023. 
The regional forecast maps with hotspots 
based on the results of the retrospective 
forecast showed the probable earthquake-
prone areas with magnitudes 𝑀𝑀𝑤𝑤 ≥ 5.5 from 
2019 to 2023. The relative (or receiver) 
operating characteristic and Molchan 
diagrams are used to evaluate the 
comparative performance of MR, RI and 
CMR approaches. The results show that the 
CMR method outperforms MR and RI 
methods. 
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Introduction 

Earthquakes are destructive natural disasters around the world. A major earthquake 
can cause significant fatalities and property loss. Thus, earthquake forecasting can be 
a useful tool to manage and reduce the seismic risk. The scientific community has 
been actively investigating earthquake forecasting methods. Despite significant 
advancements in earthquake forecasting, the field has yet to reach a stage where 
precise, time-specific alerts can be reliably issued to society. Current forecasting 
methods are based on the probabilistic assessments of seismic risks over extended 
periods rather than on accurate predictions of when and where an earthquake might 
occur. Currently, no consistent mechanism for predicting the exact time and location 
of the next significant earthquake exists, unlike other natural phenomena such as 
rainfall and storms, which might be predicted with a certain degree of precision 
(Rikitake 1968). 

Earthquake forecasting uses approaches generally categorised as empirical and 
probabilistic approaches. Empirical approaches focus on abnormal phenomena 
(precursors) that might precede an earthquake (e.g. abnormal changes in seismic 
activity, ground movements, electromagnetic signals, chemical emissions and changes 
in animal behaviour). In contrast, probabilistic approaches rely on statistical models 
that analyse seismicity patterns using quantitative data. Despite the reasonable skill 
and reliability of both methods, earthquake forecasting remains an open field, even 
as scientific interest is continuously growing (Jordan 2006, Jordan–Jones 2010). 
Currently, statistical seismicity models – developed to evaluate the likelihood of future 
earthquakes within a specific time–space–magnitude window – form the primary 
basis for earthquake forecasting (Holliday et al. 2005, Ghaedi–Ibrahim 2017, Mojarab 
et al. 2015, Nanjo et al. 2006, Peresan et al. 2005, Ogata 2011, Rundle et al. 2003, 
Peresan–Romashkova 2022, Tiampo–Shcherbakov 2013, Radan et al. 2013). 

The primary challenge lies in the fact that success probability rates derived from 
statistical seismicity models are not always significant for use in operational 
forecasting, which demands high forecasted earthquake rates to support critical 
decisions such as evacuations or other emergency responses (Jordan–Jones 2010). 
One potential solution is to combine multiple methods, which might enhance 
forecasting capabilities. However, integrating diverse forecasting approaches remains 
a significant challenge in seismic risk mitigation and management. Considering the 
non-linear and multi-scale nature of earthquake processes, effective forecasting 
requires a synthesis of statistical, physical and machine learning techniques, as 
reported by Jordan et al. (2011). Various approaches to improve earthquake 
forecasting through model combination have been reported (Rhoades–Gerstenberger 
2009). To improve forecasting accuracy, Shebalin et al. (2014) combined earthquake 
forecasts using differential probability gains. Similarly, to improve the seismic hazard 
assessment of the Central China North–South Seismic Belt, Zhang et al. (2022) 
integrated the pattern informatics (PI) method with its modified version (PIm), which 
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incorporated earthquake magnitude instead of earthquake occurrence count statistics. 
Furthermore, Zhang et al. (2024) introduced a successful new approach that 
integrated deep learning techniques with the epidemic-type aftershock sequence 
benchmark seismicity model to forecast earthquake events. 

This study improves earthquake forecasting for Zagros by combining two 
statistical approaches: the moment ratio (MR) and relative intensity (RI). The MR 
approach is based on the statistical analysis of earthquake inter-event times. It uses 
the ratio of the first- and second-order moments of earthquake inter-event times as a 
forecasting index to monitor impending seismicity. It successfully forecasted large 
earthquakes in Japan across short-, medium- and long-term periods (Talbi et al. 2013), 
and was tested in regions of moderate seismicity such as Turkey (Talbi et al. 2019). 
This study incorporated relatively low-magnitude events (𝑀𝑀𝑤𝑤 ≥ 4.5) to forecast high-
magnitude events (𝑀𝑀𝑤𝑤 ≥ 5.5), thereby improving statistical estimates through dense 
space–time coverage of the testing zone. However, to demonstrate its effectiveness, 
the MR method must be evaluated on a global scale, similar to other forecasting 
strategies. Testing it across various regions is essential to generalize its worldwide 
applicability. Beyond enhancing its evaluation, certain issues related to its 
implementation and processing should be addressed. Thus, the present analysis aims 
to generalize the MR applicability to countries with different tectonic settings, as 
demonstrated through its application to seismicity in the Zagros region. The RI 
method is a statistical forecasting approach that estimates earthquake probabilities 
based on the spatial distribution of past earthquakes. It assumes that regions with a 
high density of past earthquakes are highly susceptible to experiencing future 
earthquakes (Holliday et al. 2005). It has been tested in various global regions with 
varying degrees of success (Chen et al. 2006, Jiang–Wu 2011, Nanjo 2011, Cho–
Tiampo 2013, Chang et al. 2016, Zhang et al. 2018). Practically, combining methods 
involves integrating multiple seismicity models using an objective function. This study 
introduces a combined forecasting method, referred to as the combined moment ratio 
(CMR), which integrates the MR and RI approaches. The CMR index is derived by 
summing the normalised MR and RI indices, thereby integrating spatial and temporal 
insights to enhance forecasting performance. 

Earthquakes in the Zagros region are concentrated along a highly tectonically 
active zone formed by the collision of two major plates: the continental Arabian plate 
and the continental microplate of Central Iran. Zagros is an earthquake-prone region 
of the Iranian plateau with relatively high seismicity. Thus, a natural laboratory for 
testing forecasting methods is situated in Zagros. These factors, among others, 
motivated the seismicity analysis conducted in this study. Notably, in recent years, the 
Zagros region has been the focus of numerous studies using different approaches 
(Naderzadeh–Madani 2012, Shishegaran et al. 2019, Ommi–Hashemi 2024). 

This study improved the MR and RI forecasting approaches, by proposing a 
combined method (CMR) and studied seismicity in the Zagros region. MR, RI and 
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CMR models were used to forecast target earthquakes with magnitudes 𝑀𝑀𝑤𝑤 ≥ 5.5, 
while accounting for the completeness of magnitude data used during the learning 
and forecasting phases. The training periods commenced from the first year in which 
magnitude completeness was achieved for a given threshold. This choice is optimal, 
as it ensured access to the largest and most accurate available database, filtered 
according to the estimated magnitude of completeness (Talbi et al. 2019). The 
obtained results are presented as earthquake forecasting maps for target earthquakes 
with magnitudes exceeding or equal to 𝑀𝑀𝑤𝑤  5.5. Hotspots with expected high 
probabilities of target earthquakes are high-alarm areas. The forecasting performance 
of these methods was evaluated using the relative (or receiver) operating characteristic 
(ROC) (Jolliffe–Stephenson 2003) and Molchan error diagrams (Molchan 1997, 2003, 
2010), which enabled comparison of the results with those derived using a random 
guessing strategy or a reference method. The ROC diagram graphically represents the 
hit rate (h) against the false alarm rate (f). In contrast, the Molchan diagram graphically 
represents the failure rate (ν) versus the space–time alarm rate (τ), which represents 
the fraction of space–time under alarm. The CMR forecast results presented in this 
study demonstrated good performance, outperforming the random guessing strategy 
and the individual MR and RI methods. 

Earthquake database 

The Zagros region covers the spatial window situated between 22° N and 42° N 
latitude and 41° E and 66° E longitude (see in Appendix Figure A1). This region is a 
relatively highly seismically active tectonic province of the Iranian plateau. 
Continuous collision between the continental Arabian plate and the continental 
microplate of Central Iran since the Miocene has resulted in the formation of the 
NW-trending Zagros fold-and-thrust belt (Alavi 1994, Agard et al. 2005, Mouthereau 
et al. 2012). Crustal shortening, thrusting and folding in Zagros accommodate 
approximately half of the convergence between the Arabian and Eurasian plates (e.g. 
Vernant et al. 2004). Over time, the area has experienced numerous strong and 
destructive earthquakes: the 1853 Shiraz earthquake (𝑀𝑀𝑠𝑠 6.2), 13,000 casualties; the 
1909 Silakhur earthquake (𝑀𝑀𝑠𝑠  7.4), 5,500 casualties; the 1957 Farsinaj earthquake 
(𝑀𝑀𝑠𝑠 6.7), 1,200 fatalities; and the 1972 Qir earthquake (𝑀𝑀𝑠𝑠 6.9), extensive damage and 
~30,000 casualties. The 2017 𝑀𝑀𝑤𝑤 7.4 Sarpol Zahab earthquake in the Kermanshah 
Iranian province, close to the Iran–Iraq border, is the most recent major earthquake 
in the Zagros region with ~620 casualties (Ambraseys–Melville 1982, Raeesi et al. 
2017, Saleh et al. 2023). 

Zagros experiences widespread seismic activity of different magnitudes 
(usually < M ≈ 7) (Talebian–Jackson 2004). The instrumental seismicity of the Iranian 
plateau has been reported in several regional and global catalogues. Three main 
periods can be identified in relation to the development of local seismic networks in 
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Iran, each characterised by differing levels of data accuracy: (i) 1900–1964 and (ii) 
1964–1996 corresponding to the periods after the global-scale installation of modern 
seismological instruments, which concluded in 1996 – and (iii) the post-1996 period, 
corresponding to the development of local seismic networks within Iran. Therefore, 
the earthquake parameter uncertainty values decreased with time, particularly 
resulting from network improvements. 

This study uses the earthquake catalogue compiled by Mousavi-Bafrouei and 
Mahani (2020), which includes events with magnitudes of 𝑀𝑀𝑤𝑤  ≥ 3.0, hereafter 
referred to as MB2020. MB2020 remains the most recent catalogue available for the 
Zagros region. However, the most recent instrumental portion of MB2020 is 
primarily sourced from seismic data provided by the Iranian Seismological Centre 
(IGUT). Since MB2020 covers data only up to 2019, the IGUT catalogue was used 
to extend it by incorporating recent data from 2019 to 2023. Additionally, the same 
regression relation used in MB2020 was used to harmonise the magnitude scale of the 
extended catalogue. The resulting earthquake catalogue data file included events with 
magnitudes listed on the moment–magnitude scale (𝑀𝑀𝑤𝑤). 

A key parameter in any seismicity study based on an earthquake catalogue is the 
completeness magnitude (𝑀𝑀𝑐𝑐), which should be systematically estimated to ensure 
statistical consistency. This parameter represents the minimum magnitude above 
which earthquakes are assumed to be completely reported in the earthquake data file. 
Herein, the goodness-of-fit method (Mignan–Woessner 2012) was applied to estimate 
𝑀𝑀𝑐𝑐, which was 4.5 starting from 1996. Figure A1 (see in Appendix) shows the spatial 
distribution of earthquake epicentres with magnitudes exceeding 𝑀𝑀𝑐𝑐  from 1996 to 
2023. 

MR and RI forecasting indices 

The MR approach, an alarm-based method for earthquake forecasting, uses the ratio 
of the first- and second-order moments of earthquake inter-event times as an alarm 
index. This method assumes that the MR forecasting index is associated with 
anomalous long-term changes in background seismicity before large earthquakes 
(Talbi et al. 2013). An earthquake catalogue prepared for a specific region G over a 
specified period serves as a primary input for estimating the MR index in each cell 
and constructing forecasting maps. The study region G is divided into grid cells of 
the same size (l × l), as shown in Figure 1, where l is linked to the rupture size of 
target earthquakes. 
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Figure 1 
 Schematic diagram illustrating the neighbouring cells  

surrounding cell i used collectively in sampling 
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Two distinct periods are considered: (a) a learning period, spanning from 𝑡𝑡0 to 𝑡𝑡1 
(𝑡𝑡0 < 𝑡𝑡1), where 𝑡𝑡0 is the initial time of the analysis and (b) a testing period from 𝑡𝑡1 to 
𝑡𝑡2 (𝑡𝑡1 < 𝑡𝑡2), during which the forecast is evaluated. A schematic diagram illustrating 
these periods is shown in Figure 2. 

Figure 2  
 Schematic diagram illustrating the time intervals used  

in MR and RI learning and testing phases 

 

The MR index for each cell i ∈ G is defined as the ratio of the mean inter-event 
time series {𝜉𝜉𝑖𝑖}𝑖𝑖=1:𝑛𝑛 to the variance calculated during the learning period [𝑡𝑡0, 𝑡𝑡1[. This 
index serves as a precursory alarm function for forecasting future earthquakes with 
magnitudes M ≥ 𝑀𝑀𝑡𝑡  – referred to as target magnitudes during the forecasting period 
[𝑡𝑡1, 𝑡𝑡2]. The MR statistic is expressed as equation (1). 

𝑀𝑀𝑀𝑀𝑖𝑖(𝑡𝑡0, 𝑡𝑡1) = 𝜉𝜉
�𝑖𝑖
𝜎𝜎𝜉𝜉2

 ,  i = 1: n                                           (1) 

where 𝜉𝜉𝑖̅𝑖  and 𝜎𝜎𝜉𝜉2  represent the arithmetic mean and variance, respectively, of the 
inter-event time series{𝜉𝜉𝑖𝑖}𝑖𝑖=1:𝑛𝑛. Subsequently, the standardised MR alarm function, 
𝑀𝑀𝑀𝑀𝑖𝑖, for each cell i ∈ G, is defined using equation (2). 

𝑀𝑀𝑀𝑀𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∊𝐺𝐺(𝑀𝑀𝑀𝑀𝑖𝑖)

                                              (2) 
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The RI method was initially introduced by Holliday et al. 2005. It is based on the 
hypothesis that significant target earthquakes are highly probable to occur in spatial 
locations that have historically experienced high seismic activity (Tiampo–Sherbakov 
2012). Accordingly, the RI index is defined as the estimated frequency of past 
earthquakes. In practice, earthquake statistics from [𝑡𝑡0, 𝑡𝑡1[, are used to forecast target 
earthquakes with magnitudes M ≥ 𝑀𝑀𝑡𝑡 during [𝑡𝑡1, 𝑡𝑡2]. For each cell i, the RI index is 
defined as the total number of learning-period earthquakes with M ≥ 𝑀𝑀𝑐𝑐, 𝑛𝑛𝑖𝑖(𝑡𝑡0, 𝑡𝑡1), 
divided by the total number of such earthquakes across the entire study region G 
using equation (3). 

𝑅𝑅𝑅𝑅𝑖𝑖(𝑡𝑡0, 𝑡𝑡1) =  𝑛𝑛𝑖𝑖(𝑡𝑡0,𝑡𝑡1)
∑ 𝑛𝑛𝑖𝑖(𝑡𝑡0,𝑡𝑡1)𝑛𝑛
𝑖𝑖=1

                                                  (3) 

Similarly, the standardised RI alarm function, 𝑅𝑅𝑅𝑅𝑖𝑖, for each cell i ∈ G is defined 
using equation (4). 

𝑅𝑅𝑅𝑅𝑖𝑖 =  𝑅𝑅𝑅𝑅𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖∊𝐺𝐺(𝑅𝑅𝑅𝑅𝑖𝑖)

                                                     (4) 
To improve the performance of the MR method, this study introduces CMR that 

integrates MR and RI methods by summing their respective indices. For each cell i, 
the CMR is defined using equation (5). 

  𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 = 𝑀𝑀𝑀𝑀𝑖𝑖 + 𝑅𝑅𝑅𝑅𝑖𝑖                                                    (5) 
The CMR index is normalised by its maximum value across all cells in the study 

region similar to equations (2) and (4), as shown in equation (6). 
𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖 =  𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚 𝑖𝑖∊𝐺𝐺(𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖)
                                                   (6) 

The results of the application of the former methods to Zagros seismicity are 
presented as forecast maps showing hotspot areas where large earthquakes are 
expected to occur during [𝑡𝑡1, 𝑡𝑡2]. To ensure significant statistics, these methods are 
used in the active cells with a minimum number of earthquakes n ≥ nmin that occurred 
during [𝑡𝑡0 , 𝑡𝑡1 [. This criterion is used to maintain the stability of the results and 
guarantee an acceptable degree of accuracy of our estimates. 

Forecasting evaluation 

Two widely accepted statistical tools commonly used to evaluate the performance of 
earthquake forecasting methods are the ROC diagram (Jolliffe–Stephenson 2003, 
Holliday et al. 2005), and the Molchan diagram (Molchan 1997, 2003, 2010). 

The ROC diagram for an alarm-based model is a plot of the false alarm rate f (on 
the x-axis), which shows the percentage of alarms that do not forecast earthquakes, 
versus the hit rate h (on the y-axis), which shows the proportion of earthquakes that 
are successfully forecasted. These parameters are expressed in equation (7).  

           h = 𝑎𝑎
𝑎𝑎+𝑐𝑐

, 𝑓𝑓= 𝑏𝑏
𝑏𝑏+𝑑𝑑

                                              (7) 
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There are four possibilities of earthquake occurrences during [𝑡𝑡1, 𝑡𝑡2].  
1. An earthquake occurs in one alarmed cell (an alarm cell is a cell with an index 

exceeding a given threshold, 𝐼𝐼𝑖𝑖 ≥ 𝐶𝐶0)(success). The number of such cells is a. 
2. No earthquake occurs in a non-alarmed cell (𝐼𝐼𝑖𝑖 < 𝐶𝐶0)(success). The number of 

such cells is d. 
3. No earthquake occurs in an alarmed cell (false alarm). The number of such 

cells is b. 
4. An earthquake occurs in a non-alarm cell (failure to forecast). The number of 

such cells is c. 
The Molchan error diagram plots the failure to forecast rate ν – defined as the 

number of unforecasted earthquakes divided by the total number of occurred 
earthquakes – against the space–time alarm rate τ, which represents the ratio of 
alarmed cells to the total number of cells in the study area and is expressed as equation 
(8). 

               𝜈𝜈 = 𝑐𝑐
𝑎𝑎+𝑐𝑐

, 𝜏𝜏 = 𝑎𝑎+𝑏𝑏
𝑎𝑎+𝑏𝑏+𝑐𝑐+𝑑𝑑

                                            (8) 
For a given space–time region, the alarm-based model is entirely characterised by 

its alarm function, denoted 𝐴𝐴 ϵ [0,1]. When 𝐴𝐴 ϵ [0,1] exceeds a given threshold value, 
say 𝐶𝐶0, an alarm is issued and a target earthquake is forecasted. The 𝐶𝐶0 values are 
ordered from the smallest to the largest. Additionally, a diagonal line is plotted on the 
ROC diagram from the lower-left corner to the upper-right corner, representing a 
random forecast, and is identified by the equation h = f. Effective forecasting 
performance is indicated when the curve lies above the diagonal reference line. In 
contrast, the diagonal line in the Molchan diagram extending from the upper left 
corner to the lower right corner represents the performance of a random forecast. 
A forecasting method performs well when the graph is below this diagonal. 

Moreover, the binomial distribution of the number of chance hits within the alarm 
region can be used to construct confidence intervals for the Molchan diagram 
(Kossobokov 2006, Zechar–Jordan 2008). Within this framework, the curve Γ𝛼𝛼 , 
corresponding to a confidence level of 1 − α, is defined using equations (9) and (10). 

Γ𝛼𝛼 = {(τ, να (τ)) ∈ [0, 1] × {1, 2, . . . , N}}                             (9) 
 𝜈𝜈𝛼𝛼 (τ) = 1 − [min 1≤ k ≤N {k/P (𝓑𝓑 (N, τ) = k − 1) > 1 − α}/N]           (10) 

where N represents the number of target events that occurred within the testing 
region G, and k denotes the number of successful hits. 

Application and results 

The Zagros region, known for its relatively high seismic activity, has been selected as 
the study area to demonstrate the results of various earthquake forecasting 
approaches for events with magnitudes M ≥ 𝑀𝑀𝑡𝑡 , where 𝑀𝑀𝑡𝑡  = 5.5 (Table 1). This 
magnitude class is called the target magnitude. The results are presented as forecasting 
maps constructed using optimal parameters obtained from a retrospective analysis of 
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the unified earthquake catalogue compiled earlier. One crucial parameter is the cell 
size, which plays a key role in earthquake forecasting owing to its relation with rupture 
areas potentially spanning multiple cell sizes. Large cell sizes can enhance forecasting 
performance by covering a wide area and increasing the overall hit rate. However, 
large cell sizes might reduce forecasting precision, as they encompass broad 
geographical regions, making it hard to localise forecasts. 

The MR method was performed using the mentioned parameters: (i) a cell size, 
l = 0.25° suitable for forecasting earthquakes with magnitudes M ≥ 5.5, (ii)  
[𝑡𝑡0 , 𝑡𝑡1[ = [1996, 2019[, and (iii) [𝑡𝑡1, 𝑡𝑡2]= [2019, 2023]. Thus, 1,804 earthquakes with 
magnitudes M ≥ 4.5 occurring in Zagros were used during [𝑡𝑡0 , 𝑡𝑡1 [. The next step 
removing non-Poissonian (dependent) earthquakes (foreshocks, aftershocks and 
swarms) – to ensure that the forecasting h is not artificially inflated by aftershock 
occurrences, especially in the case of a successful major event forecast. To accomplish 
this, Gardner and Knopoff’s (1974) method is used to produce a declustered 
catalogue using Zmap software (Wiemer 2001). Table 1 presents 14 background 
events obtained after declustering the catalogue in the testing zone during the 
considered testing period with target magnitudes of M ≥ 5.5. 

Table 1 
List of target earthquakes with magnitudes M ≥ 5.5 that occurred  

in the testing region during 2019–2023 

N Longitude (°E) Latitude (°N) Date Time Magnitude 
1 49.55 31.89 08/07/2019 07:00 5.8 
2 54.99 27.07 21/10/2019 10:58 5.7 
3 52.09 29.61 27/01/2020 13:28 5.5 
4 55.85 26.98 16/02/2020 12:30 5.9 
5 57.28 28.30 27/03/2020 06:40 5.5 
6 53.35 27.67 09/06/2020 16:08 5.5 
7 53.43 27.63 09/06/2020 17:18 5.8 
8 55.29 26.71 15/01/2021 21:31 5.5 
9 50.67 29.73 18/04/2021 06:41 6.0 
10 49.75 32.33 04/10/2021 02:39 5.9 
11 56.17 27.54 14/11/2021 12:08 6.4 
12 54.65 26.89 16/03/2022 23:15 5.9 
13 55.30 26.84 01/07/2022 21:32 6.2 
14 55.39 26.80 23/07/2022 16:09 5.8 

Herein, the MR, RI and CMR methods use the neighbouring cells surrounding 
each cell i, as shown in Figure 1, for the computation of statistics 𝜉𝜉𝑖̅𝑖 and 𝑛𝑛𝑖𝑖(𝑡𝑡0, 𝑡𝑡1). 
This integration increases the number of cells in the testing region and forecasting 
performance. Furthermore, checking different values for the minimum sample size 
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚  indicates the 𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚 value of 20 to optimally reduce alert rates, guaranteeing 
accuracy and preserving result stability. Consequently, MR and RI indices estimated 
by considering at least 20 inter-event times or number of events are considered in our 
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calculation (𝑛𝑛 ≥ 20). Or else, the cell is disregarded and labelled as empty or assigned 
no estimate, it is excluded from analysis. To ensure a fair comparison, the RI method 
is used applying the same parameters and conditions. Finally, the CMR strategy is 
implemented. The resulting forecasting maps for these methods are illustrated using 
coloured cells, highlighting hotspot regions (see in Appendix Figures A2, A3 and A4). 
Figure A2 shows the MR forecasting map for Zagros, highlighting target-magnitude 
events that occurred during 2019–2023. MR indices are estimated according to the 
colour-coded legend. Similarly, Figure A3 shows the RI forecasting map for the same 
region and testing period. Figure A4 shows the forecasting results obtained using our 
proposed CMR approach. The map illustrates the previously identified target events 
with magnitudes M ≥ 5.5, and the colour scale represents the CMR indices. 
Additionally, all maps display target earthquakes with M ≥ 5.5, marked by black 
circles. The total number of space–time cells is given by multiplying the number of 
space cells by the number of time steps. For this test, we consider a one-time step 
(Δt), resulting in 632 space–time cells (a testing region). 

Finally, the obtained results are tested using ROC and Molchan diagrams. 
These diagrams rely on systematically varying the alarm threshold 𝐶𝐶 . The values 
a (forecast = yes, observed = yes), b (forecast = yes, observed = no), c (forecast = no, 
observed = yes) and d (forecast = no, observed = no) were estimated. In Appendix 
Figures A5a and A5b show the evaluation of each forecasting method – MR (red 
curve), RI (blue curve) and CMR (black curve) – using the ROC and corresponding 
Molchan diagrams, respectively. The diagonal lines in Figures A5a and A5b represent 
the performance of a random forecast, with a confidence interval α of 5%. Both 
diagrams indicate that the CMR approach outperforms the other two methods. 

Discussion and conclusion 

This study enhanced earthquake forecasting methods. However, it is crucial to 
emphasise that all proposed approaches have failed to provide precise, time-specific 
warnings to date. The proposed forecasting method is a probabilistic approach 
capable of identifying regions where future earthquakes are expected over extended 
periods. Nonetheless, the method does not offer real-time alerts or enable precise 
predictions regarding the exact timing and location of future seismic events. 

To improve earthquake forecasting in Zagros, this study used the CMR method 
by combining MR and RI methods. The complementary strengths of MR and 
RI methods improved the CMR method. While RI efficiently displayed spatial regions 
with historically high seismic activity, the MR approach resumed inter-event time 
patterns to identify time anomalies. A forecasting model is proposed that combines 
these indices using a straightforward summarisation technique, leveraging the 
strengths of each index. By combining these methods, the CMR approach linked 
temporal and spatial dimensions and patterns of earthquake precursors, providing a 
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complete forecasting approach. Our analysis demonstrated that the inherent 
limitations of individual models could be mitigated by integrating multiple forecasting 
techniques. The retrospective testing conducted in this study showed the good 
performance of the CMR method compared to individual MR and RI models using 
ROC and Molchan diagrams. The CMR method outperformed random guessing and 
the MR and RI methods, effectively identifying seismic hotspots with an elevated risk 
of earthquakes with magnitudes M ≥ 5.5. 

MR and RI methods were selected for the combination based on their robustness, 
successful across different regions and complementary characteristics. Although 
numerous forecasting techniques are available, the simplicity and interpretability of 
MR and RI were ideal for integration. Moreover, the summation-based approach 
retained the intuitive nature of the indices while significantly enhancing performance. 

Future research should aim to refine the CMR method by exploring adaptive 
weighting strategies for combining indices, optimising spatial resolution and 
potentially incorporating additional forecasting models. Reducing false alarm rates 
remains a critical challenge, which can be addressed through enhanced parameter 
selection and machine learning integration. Additionally, future studies should involve 
testing the CMR method in other tectonically active regions to evaluate its 
generalisability and adaptability to diverse seismic settings. The CMR method offers 
valuable and significant insights for seismic forecasting. The application of this 
method to Zagros yielded promising results and established a foundation for 
evaluating its applicability in other areas. 
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Appendix 
Figure A1 

Spatial distribution of earthquakes with magnitudes above 𝑴𝑴𝒄𝒄  
in Zagros from 1996 to 2023 

 
Figure A2 

 MR forecasting map for Zagros showing target earthquakes  
with M ≥ 5.5 that occurred during 2019–2023  
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Figure A3 
 RI forecasting map for Zagros showing target earthquakes with M ≥ 5.5  

that occurred during 2019–2023 

 
Figure A4 

CMR forecasting map for Zagros showing target earthquakes with M ≥ 5.5 
 that occurred during 2019–2023 
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Figure A5 
ROC and Molchan diagrams for target earthquakes with M ≥ 5.5  

in Zagros during 2019–2023 

a) ROC H-F diagram 

 
b) Molchan diagram 
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