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Econometric analysis begins with some economic phenomenon that is of in-
terest to us that we intend to analyse. First we turn to economic theory to see what 
insights it can offer. It postulates an explanation in some sort of conditions that de-
scribe the phenomena in terms of the key economic variables and model parame-
ters. However, to answer specific questions, we have to quantify the parameters in-
volved. We would like to adopt an estimation method whose implementation does 
not require the imposition of additional restrictions to the data generating process 
beyond those implied by the economic model. If it turns out that just for the pur-
pose of getting these estimates we have to place further restrictions and make more 
assumptions and these are found to be unjustified by theory or inappropriate for the 
data then we run the risk that the invalidity will undermine all our subsequent in-
ferences about the phenomenon of our interest. We would like to use a method of 
statistical estimation that fits well with exactly the kind of information we are get-
ting out of our economic models. But what form does that information take? Very 
often restrictions implied by economic theory take the form what we will refer to 
as population moment conditions. The generalized method of moments (GMM) is a 
statistical method that combines observed economic data with the information in 
population moment conditions to produce estimates of the unknown parameters of 
this economic model. Once we have those parameters, we can go back to perform 
inference about the basic question that is of interest to us. Shortly we will see that 
GMM is very well tailored exactly to the kind of information we are getting out 
from our economic models. 

The purpose of this article is to provide an introduction to the GMM frame-
work and to give a rough picture of current on-going issues in the field. There are 
excellent textbooks and reference books available on the topic which are more 
precise and elaborate in all aspects like Mátyás [1999] or Hall [2005]. We will 
heavily rely on them and the interested reader is encouraged to study them. Our 
treatment misses many details but all simplifications were made to facilitate easy 
understanding. 

After introducing the principle of the method of moments in Section 2, we 
show how to generalize the idea into GMM in Section 3. In Section 4 we discuss 
the properties of the GMM estimator. The estimation procedure is described in 
Section 5, while Section 6 provides a short description of testing in the GMM 
framework. We will also address briefly the question of moment selection in Sec-
tion 7. After a short survey of the recent research in Section 8, Section 9 con-
cludes. 
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1. The method of moments principle 

The population moment conditions will play a crucial role in the discussion so it 
is worth going back to the primitives to understand the mechanics of GMM. 

The raw uncentered moments are easy to compute and they reveal important as-
pects of a distribution. For example, the first four moments tell us about the popula-
tion mean, variance, skewness and kurtosis. Using them we can immediately place 
restrictions according to our theory on the location, scale or shape of the distribution 
without specifying a full model or distribution. 

Once we have some information on the population, the question remains how to use 
the sample to estimate the parameters of interest. In general, sample statistics each have 
a counterpart in the population, for example, the correspondence between the sample 
mean and the population expected value. The natural next step in the analysis is to use 
this analogy to justify using the sample moments as bases of estimators of the popula-
tion parameters. This was the original idea in Karl Pearson’s work [1893], [1894], 
[1895] in the late 19th century. 

The Pearson family of distributions is a very flexible mathematical representation 
that has several important and frequently used distributions among its members de-
pending on the parameterization you choose. Pearson’s problem was to select an ap-
propriate member of the family for a given dataset. 

Example 1 – Simple method of moments estimator  
To show a very simple example, assume that the population distri-

bution has unknown mean μ  and variance equal to one. In this case, 
the population moment condition states that [ ] μiE x .= If 

{ }: 1 2ix i , , ,n= …  is an independent and identically distributed sample 
from the distribution described formerly, then the sample average 

1 n

i
i i

x x
n =

= ∑  is the sample analogue to the population mean [ ]iE x . By 

utilizing this analogy principle, the method of moments (MM) estima-

tor for [ ] μiE x = is simply given by 
1

1 μ
n

i n
i

ˆx x
n =

= =∑ . 

Basically we had to work out the first moment, then to replace it with the sample 
analogue and to solve the equation for the unknown parameter. What remains to be 
established is whether this approach is the best, or even a good way to use the sample 
data to infer the characteristics of the population.1 Our intuition suggests that the bet-

 
1 We will return to this subject in Section 4 discussing the properties of the GMM estimator. 
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ter the approximation is for the population quantity by the sample quantity, the better 
the estimates will be. 

To make a step further, it is time to introduce some more general definitions. 

Definition 1 – Method of moments estimator 
Suppose that we have an observed sample { }: 1 2ix i , , ,n= …   from 

which we want to estimate an unknown parameter vector θ R p∈  
with true value 0θ . Let ( )θif x ,  be a continuous and continuously 

differentiable R Rp q→   function of θ , and let ( )θiE f x ,⎡ ⎤⎣ ⎦  exist 
and be finite for all i and θ . Then the population moment conditions 
are that ( )0θ 0iE f x ,⎡ ⎤ =⎣ ⎦ . The corresponding sample moments are 

given by  

( ) ( )
1

1θ θ
n

n i
i

f f x ,
n =

= ∑ . 

The method of moments estimator of 0θ  based on the population 

moments ( )θiE f x ,⎡ ⎤⎣ ⎦  is the solution to the system of equa-

tions ( )θ 0nf = . 

Note that if q p= , then for an unknown parameter vector θ  the population mo-

ment conditions ( )θ 0iE f x ,⎡ ⎤ =⎣ ⎦  represent a set of p  equations for p  unknowns. 
Solving these moment equations would give the value of θ  which satisfies the popu-
lation moment conditions and this would be the true value 0θ . Our intuition suggests 
that if the sample moments provide good estimates of the population moments, we 
might expect that the estimator θ̂  that solves the sample moment conditions 

( )θ 0n
ˆf =  would provide a good estimate of the true value 0θ that solves the popula-

tion moment conditions ( )0θ 0iE f x ,⎡ ⎤ =⎣ ⎦ . 

Now we present some common models in terms of the MM terminology. 

Example 2 – Ordinary least squares (OLS) 
Consider the linear regression model 

0βi i iy x u′= + , 
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where ix  is the vector of p  covariates, 0β  is the true value of the p 
unknown parameters in β , and iu  is an exogenous error term. In this 

case our population moment condition ( )0θ 0iE f x ,⎡ ⎤ =⎣ ⎦  translates to 

[ ] ( )0β 0i i i i iE x u E x y x′⎡ ⎤= − =⎣ ⎦ . Then the sample moment conditions 

are given by  

( )
1 1

1 1 β 0
n n

i i i i i
i i

ˆˆx u x y x
n n= =

′= − =∑ ∑ . 

Thus the MM estimator of 0β  is given by β̂  that solves this system 
of p linear equations and is equivalent to the standard OLS estimator. 

Example 3 – Instrumental variables (IV) 
If in Example 2 we allow iu  to be correlated with the covariates in 

ix , we can state the population moment conditions in terms of the 
exogeneity assumption on the p instruments. Our population moment 
conditions are given by [ ] ( )0β 0i i i i iE z u E z y x′⎡ ⎤= − =⎣ ⎦  and the sample 

moment conditions are 

( )
1

1 β 0
n

i i i
i

ˆz y x
n =

′− =∑ . 

Just like previously, the MM estimator of 0β  is given by β̂  that 
solves this system of p linear equations and this result shows that the 
standard IV estimator is also an MM type estimator. 

Note that as long as the exogeneity of the error term and the instrument can be 
justified by economic reasoning, these examples do not impose any additional re-
strictions on the population that is not implied by some theory. 

Example 4 – Maximum likelihood (ML) 
In case we have a fully specified model, the sample log-likelihood 

is ( )
1

1 θ
n

i
i

l x
n =
∑ . The first order conditions for the maximization of the 

log-likelihood function are then  
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( )
1

θ1 0
θ θ θ

n i

i

l x
ˆn =

∂
=

∂ =
∑ . 

These first order conditions can be regarded as a set of sample 
moment conditions so the maximum likelihood estimator can be given 
an MM interpretation as well. 

So far we have considered cases where the number of moment conditions q was 
equal to the number of unknown parameters p. Assuming functionally independent 
moment equations, the resulting system of equations provided by the moment condi-
tions can be solved to obtain the MM estimator. In the case of q p<  there is insuffi-
cient information and the model is not identified. If q p> , the model is over-
identified, and in most cases, we are not able to solve the system of equations. How-
ever, estimation still can proceed and the next section will show the proper way to 
follow. 

2. The GMM Estimator 

We shall recall that population moment conditions represent information implied 
by some theory. It is quite natural that we want to use the most information avail-
able.2 Unfortunately the MM estimator cannot incorporate more moments than pa-
rameters.3 

Example 5 – Motivation for GMM 
Consider again Example 1. Notice that our estimation was based 

solely on the first raw moment of the distribution. Now suppose that 
we believe to know that the sample at hand is a result of n  independ-
ent draws from a Poisson distribution with parameter λ . Thus the new 
(additional) population moment condition based on the second raw 
moment is 2 2λ λ 0iE x⎡ ⎤ − − =⎣ ⎦ . The MM estimator of λ  should satisfy 

the system of equations based on the sample moments 
 
2 Resisting the temptation to impose additional assumptions that might be unjustified by theory. 
3 However, there are still many possible actions one might think of like using all different sets of moments 

and then averaging the estimates, etc. but here this is not the road taken. 
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( )
1

2 2

1

1 λ
0

1 0λ λ

n

i
i

n

i
i

ˆx
n

ˆ ˆx
n

=

=

⎡ ⎤−⎢ ⎥ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦− −⎢ ⎥⎣ ⎦

∑

∑
. 

Now we have two moment conditions and one unknown parameter 
which means that we do not have a general solution for λ̂ . 

We could use only p number of moments to estimate the parameters but by dis-
missing the ( )0q p− >  additional moments, we would loose the information con-
tained in those conditions. The remedy for this situation was introduced to the 
econometrics literature by Hansen [1982] in his famous article and it is called GMM. 
The idea behind GMM estimation is that once it is impossible to solve the system of 
equations provided by the sample moment conditions, we can still have an estimate 
of θ  that brings the sample moments as close to zero as possible.4 Note that in the 
population still all moment conditions hold and the problem arises because we have a 
finite sample. 

Definition 2 – Generalized method of moments estimator 
Suppose that the conditions in Definition 1 are met and we have an 

observed sample { }: 1 2ix i , , ,n= …  from which we want to estimate an 

unknown parameter vector θ Θ p∈ ⊆ \  with true value 0θ .  Let 

( )θiE f x ,⎡ ⎤⎣ ⎦  be a set of q population moments and ( )θnf  the corre-

sponding sample counterparts. Define the criterion function ( )θnQ  as 

( ) ( ) ( )θ θ θn n n nQ f W f ,′=  

where nW , the weighting matrix, converges to a positive definite ma-
trix W as n grows large. Then the GMM estimator of 0θ  is given by 

( )
θ Θ

θ θn
ˆ arg minQ

∈
= . 

 
4 There are, of course, some statistical antecedents to GMM. The method of minimum Chi-square by 

Neyman and Pearson, E. [1928] deals with the general question how to estimate parameters when having more 
moment conditions than unknown parameters. However, they did not work with population moment conditions 
explicitly, the general idea was basically the same. 
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Basically the GMM estimator is a way of exploiting information from our general 
form of population moment conditions. When the number of moment conditions 
equals the number of unknown parameters GMM = MM. When q p>  then the 
GMM estimator is the value of θ  closest to solving the sample moment conditions 
and ( )θnQ  is the measure of closeness to zero. 

It might be useful to have a look at two practical applications from the literature 
that result in over-identifying moment conditions. 

Example 6 by Hansen and Singleton [1982] 
In their classical paper they analysed the movement of assets over 

time in a consumption-based capital asset pricing model. In a some-
what simpler version of their non-linear rational expectations model, 
the representative agent maximizes expected discounted lifetime utility  

( )τ
τ

τ 0
β Ωt tE U c

∞

+
=

⎡ ⎤
⎢ ⎥⎣ ⎦
∑  

subject to the budget constraint 

1 tt t t t t tc p q r q w−+ ≤ + ∀ , 

where tc  is per period consumption, t t tp ,q ,r  are relative price, quan-
tity and return on the asset with one period maturity, tw  is real wage 
and Ωt  is the information set of the agent in period t. Hansen and Sin-
gleton use a constant relative risk aversion utility function 
( ) ( )γ 1 γU c c= −  so the first order conditions to this optimization 

problem are   

γ
1 1β 1Ω 0t t

t
t t

c r
E

c p
+ +

⎡ ⎤⎛ ⎞⎢ ⎥− =⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

. 

This looks pretty much like a population moment condition but the 
problem is that we have two parameters to estimate ( )β γ,  and only 
one moment condition. However, by an iterated conditional expecta-
tions argument for any vector Ωt tz ∈  the Euler-equation becomes 
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γ
1 1β 1 0t t

t
t t

c r
E z

c p
+ +

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟− =⎜ ⎟⎢ ⎥⎜ ⎟⎝ ⎠⎝ ⎠⎣ ⎦
, 

so in theory the model is identified by using any variables that are 
known to the agent in period t, such as lagged values of 1t tr p −  or 

1t tc c −   and can be estimated consistently with GMM.5 In contrast, 
maximum likelihood estimation of this model would involve exactly 
specifying conditional distributions of the variables and a lot of nu-
merical integration which is computationally burdensome. 

In the structural model from the previous example we were originating population 
moment conditions from what we were referring to as economic theory. However, 
sometimes “economic theory” means just some plausible assumptions based on intui-
tion or other reasoning. Next we show an example which is based on a much less struc-
tural model, and moment conditions come from the exogeneity assumption on the in-
strumental variables. 

Example 7 by Angrist and Krueger [1991] 
The authors investigate the number of years spent in education and 

the subsequent earning potentials of individuals. They were interested 
in the impact of compulsory schooling laws in the US and estimated 
the following equation: 

( ) 0 1β βi i iln w ed controls u= + + + . 

The parameter of interest was 1β , the semi-elasticity of wage with 
respect to education. Estimating this linear equation by OLS could be 
biased and inconsistent as ied  is probably correlated with individual 
factors in the regression error term iu  such as individual costs and po-
tential benefits of schooling or other options outside the schooling sys-
tem, most of which are unobserved by the researcher. Using the struc-
ture of compulsory school attendance laws at that time in the US they 
were able to argue that (in addition to the controls) dummy variables 
indicating the quarter of birth for each individual could be used to in-

 
5 Note that the original variables in the model need not be stationary as taking consequent ratios makes the 

series stationary. 
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strument for the years spent in education. Their exogeneity assumption 
implies that the following population moment conditions hold: 

( )( )0 1β β 0i i iE z ln w ed controls⎡ ⎤− − − =⎣ ⎦ , 

where the vector of instruments iz contains the exogenous variables 
from the original model supplemented by the quarter of birth dummies. 
Note that there are more moment conditions then parameters and we 
could estimate the model by GMM. 

3. Properties of the GMM Estimator 

Under some sufficient conditions the GMM estimator as given in Definition 2 is 
consistent and asymptotically normally distributed. In the following we will discuss 
these properties and the sufficient conditions in somewhat more detail. 

Population moment conditions provide information about the unknown parame-
ters. The quality and the utilization method of this information are crucial in several 
aspects. First, a natural question arises about the sufficiency of the information con-
tained in the moment conditions whether it is enough for the estimation to be “suc-
cessful”. This leads us to the issue of identification. 

Assumption 1 – Identification 
In the following, we present the necessary conditions for identification. 
– Order condition: As we have already seen if q p< , the model is 

not identified and we are unable to estimate the parameters. So we 
need q p≥ . 

– Rank condition: Once we have enough moment conditions, it is 
still crucial that among those moments should be at least p functionally 
independent ones which are satisfied if the expectation of the q p×  
Jacobian of the moment equations evaluated at 0θ  has rank (at least) p.  

– Uniqueness: If we think of ( )θiE f x ,⎡ ⎤⎣ ⎦  as a function of θ , then 

for successful estimation ( )θ 0iE f x ,⎡ ⎤ =⎣ ⎦  has to be a unique property 

of 0θ . It means that 0θ should be the only parameter vector which sat-
isfies the population moment conditions. 
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We also need to establish a connection between the population moments and their 
sample counterparts. This will ensure that in the limit, the true parameter vector will 
be the one that solves the sample moment equations. 

Assumption 2 – Convergence of sample moments 
If the data generating process is assumed to meet the conditions for 

some kind of law of large numbers to apply, we may assume that the 
sample moments converge in probability to their expectation. That is 

( ) ( )0 0
1

1θ θ
n

n i
i

f f x ,
n =

⎛ ⎞=⎜ ⎟
⎝ ⎠

∑  converges to ( ) ( )0 0θ θ 0n iE f E f x , .⎡ ⎤⎡ ⎤ = =⎣ ⎦ ⎣ ⎦   

Note that we have basic laws of large numbers only for independent observations. 
For a more general case, with dependent or correlated observations, we would as-
sume that the sequence of observations ( )θif x ,  constitutes an ergodic q-
dimensional process. Assumptions 1 and 2 together with the conditions from Defini-
tions 1 and 2 establish that the parameter vector will be estimable. 

Now we make a statistical assumption that allows us to establish the properties of 
asymptotic distribution of the GMM estimator. 

Assumption 3 – Distribution of Sample Moments 
We assume that the sample moments obey a central limit theorem. 

This assumes that the moments have a finite asymptotic covariance 
matrix, ( )1 n F , so that 

( ) ( )0θ 0d
nn f N ,F⎯⎯→ . 

Again, if the observations are not independent, it is necessary to make some as-
sumptions about the data so that we could apply an appropriate central limit theo-
rem. 

Theorem 1 – GMM is consistent and asymptotically normal  
Under the preceding assumptions, the GMM estimator is consistent 

and asymptotically normally distributed with asymptotic covariance 
matrix GMMV defined as 

( ) ( ) ( ) ( ) ( ) ( )
1 1

0 0 0 0 0 0
1 θ θ θ θ θ θGMMV G WG G WFWG G WG
n

− −′ ′ ′⎡ ⎤ ⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
, 
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where G is a ( )q p×  matrix defined as 

( ) ( )

( ) ( )

( ) ( )

1 1

1

1

θ θ
θ θ

θ
θ

θ
θ θ

θ θ

p

q q

p

f x, f x,

f x,
G E E

f x, f x,

⎡ ⎤∂ ∂
⎢ ⎥

∂ ∂⎢ ⎥⎡ ⎤∂ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥∂⎢ ⎥⎣ ⎦ ⎢ ⎥∂ ∂
⎢ ⎥

∂ ∂⎢ ⎥⎣ ⎦

"

# % #

"

, 

that is, ( )0θG  is the expected value of the Jacobian of the population 
moment functions evaluated at the true parameter value 0θ . 

The point is that in general the variance of the GMM estimator depends on the 
choice of nW , so we can extract the most information from the moment conditions 
by choosing an appropriate weighting matrix. By analysing the quadratic form in the 
GMM criterion function 

( ) ( ) ( )θ θ θn n n nQ f W f′= , 

we see that setting nW I= gives us the sample moments’ error sum of squares. 
In fact, we could use a diagonal weighting matrix nW w=  to minimize the 

weighted sum of squared errors. This is a natural idea as some moments might be 
more volatile than others and, thus, it makes sense to normalize the errors in the 
moments by their variance. 

However, the elements of ( )θnf  are freely correlated. Suppose the asymptotic 
covariance of the sample moments normalized by the root of the sample size is 

( )0θnAsy.Var n f F⎡ ⎤ =⎣ ⎦ . Then the choice of  1
nW F −=  weights all elements of the 

criterion function appropriately so should be optimal based on the same idea that mo-
tivates generalized least squares. 

Theorem 2 – Optimal weighting matrix 
For a given set of moment conditions with the optimal choice of the 

weighting matrix 1
nW F −= , the GMM estimator is asymptotically ef-

ficient with covariance matrix 

( ) ( )
1

1
0 0

1 θ θGMM ,optimalV G F G
n

−
−′⎡ ⎤= ⎢ ⎥⎣ ⎦

. 
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It is important to emphasize that the efficiency result is valid only for a given set 
of moment conditions. That is, GMM is asymptotically efficient in the class of con-
sistent and asymptotically normal estimators that do not use any additional informa-
tion on top of that is contained in the moment conditions. The traditional ML utilizes 
a fully specified distribution so the two estimators are incomparable in a sense that 
they rely on different information sets. However, as we saw earlier in Example 4 if 
the moment conditions are the same as the first order conditions of ML estimation 
then the two estimators are numerically equal. 

Especially, if the model is correctly specified and the underlying distribution is one 
from the exponential family, we can use the sufficient statistics as bases for moment 
conditions. In these cases GMM is efficient in a sense that it attains the Cramer–Rao 
lower bound asymptotically. The problem with this theoretical case is that it is unop-
erational as GMM’s main strength is not specifying an exact distribution. 

4. Estimation 

After having discussed the properties of the GMM estimator, it is time to turn to 
some more practical issues like estimation. The question is how do we get those 
numbers when we have the data. 

In the exactly identified case when  q p= , GMM works the same as MM and 
there is no need for optimization as the system of moment conditions can be solved 
for the unknown parameters. 

Example 8 – Exactly identified case 
Consider the Poisson model from Example 5. Recall that we had 

two moment conditions for the single unknown parameter λ . Suppose 
we have a sample of 20n =  observations. Now we are going to esti-
mate λ  based on both moment conditions separately. The estimators 
relying on the first two raw moments are 

20

1

1λ 3 55
20first i

i

ˆ x .
=

= =∑ , 

20
21

20
1

1 1 4
λ 3 3859

2

i
i

second

x
ˆ .=

− + +
= =

∑
. 
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In order to utilize both moments at once, we need to compute the GMM estimator. 
Recall that in the over-identified case when q p>  the asymptotic variance of the 
GMM estimator, GMMV  depends on the weighting matrix. We want to get the most 
information out of our moment conditions thus we would like to use the optimal 
weighting matrix that minimizes GMMV . As we discussed earlier, this would be 1F − . 
Logic suggests that first we should estimate the optimal weighting matrix so that we 
could use it in the criterion function to estimate 0θ  efficiently. The problem is that to 

get an estimator of 1F − , we already need an estimate of 0θ . 
We can resolve this circularity by adopting a multi-step procedure. 

1. We can choose a sub-optimal weighting matrix, say I, and mini-
mize the simple sum of squared errors in the moments 

( ) ( ) ( )θ θ θn n nQ f f′= . This will deliver a preliminary but consistent 

estimate of 0θ  which can be used then to estimate F and thus 1F −  
consistently. 

2. With the optimal weighting matrix estimate at hand, we can 

minimize the new criterion function ( ) ( ) ( )1θ θ θn n n
ˆQ f F f−′= , and es-

timate 0θ  efficiently. 

This is the so-called two-step GMM estimator which is consistent and efficient. 

Example 9 – GMM estimation 
We now continue with the Poisson example. In the first step we have 

to minimize the criterion function with using I as a weighting matrix: 

( ) ( ) ( )
( ) ( )

20 20
1 1
20 20

1 1
20 20

2 2 2 21 1
20 20

1 1

λ λ
θ θ θ

λ λ λ λ

i i
i i

n n n

i i
i i

x x
Q f f

x x

= =

= =

′
⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥′ ⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑

∑ ∑
. 

To facilitate computation, we started the optimization routine from 
the MM estimate based on the first raw moment λ 3 55first

ˆ .= . The 

first-step GMM estimate is  

1λ 3 3885ˆ .=  
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which can be used to estimate F  as follows: 

( ) ( ) 20 1 11 1
1 1 20 2 2 2 21 1 1 1 1 1

λ λ
θ θ

λ λ λ λ

n i i
n i in

i i i i

ˆ ˆx xˆ ˆF̂ f x , f x , ˆ ˆ ˆ ˆx x= =

′
⎡ ⎤ ⎡ ⎤′ − −

= = ⎢ ⎥ ⎢ ⎥
− − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

∑ ∑ . 

Substituting in for 1λ̂  and inverting F̂  the estimated optimal 
weighting matrix is 

1 10 5333 1 4504
1 4504 0 2085optimal n
. .ˆ ˆW F
. .

− −⎡ ⎤
= = ⎢ ⎥−⎣ ⎦

. 

In the second step we have to minimize the new criterion 

( ) ( ) ( )1θ θ θn n n
ˆQ f F f−′= . 

The optimization routine was started from the first-step GMM es-
timate. Solving the minimization problem, for the second-step GMM 
estimator of λwe get  

λ 3 2651GMM
ˆ .= . 

We still have to estimate the variance of the estimator, GMMV .  

First we recompute 1
nF̂ −  with λGMM

ˆ  at hand exactly as we did previ-
ously. Then we also have to estimate G, the matrix of the derivatives. 
G is the expected value of the Jacobian but notice that in our case the 
derivatives do not depend directly on the data so it can be estimated 
simply as 

1

2λ 1GMM

Ĝ ˆ
−⎡ ⎤

= ⎢ ⎥
− −⎢ ⎥⎣ ⎦

. 

Now we can compute the estimated variance of λGMM
ˆ  as 

111 0 0973GMM nn
ˆ ˆˆ ˆV G F G .

−−⎡ ⎤′= =⎣ ⎦ . 

Notice that the MM estimate based on the first raw moment equals 
the ML estimate for which we can estimate the asymptotic variance 
from the Cramer–Rao lower bound as λ̂ n . 
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The Table compares the results. 

Comparison of estimators 

Results ML Two-step GMM 

λ  3.55 3.2651 
Standard error 0.4213 0.3119 

In fact, we could continue this multi-step procedure to obtain the so-called iter-
ated GMM estimator. Hansen, Heaton and Yaron [1996] suggest a method where the 
dependence of the weighting matrix on the unknown parameters is acknowledged 
and taken care of during the optimization procedure. Their approach became known 
as the continuously updated GMM. There is fairly compelling evidence to suggest 
that there are gains to iteration in terms of finite sample performance of the estimator 
but in most cases the two-step estimator is applied. 

Given the mathematical form of the moment conditions, in some cases we can 
solve the optimization problem analytically and get a closed form representation of 
the estimates in terms of the data which will speed up the computations. However, in 
other cases such as with nonlinear models, we have to use numerical optimization 
routines. The problem with the widely used Newton–Raphson and other practical 
numerical optimization methods is that global optimization is not guaranteed. The 
GMM estimator is defined as a global minimizer of a GMM criterion function, and 
the proof of its asymptotic properties depends on this assumption. Therefore, the use 
of a local optimization method can result in an estimator that is not necessarily con-
sistent or asymptotically normal. 

Care should be taken with nonconvex problems where the existence of possibly 
multiple local minima may cause problems. With starting the optimization algorithm 
from several initial values spread out in the parameter space, one might be able to 
find the global minimum. However, it should be noted that the multi-start algorithm 
does not necessarily find he global optimum and is computationally intensive. 

There are of course much more advanced numerical techniques and there is a 
freely available and fairly user friendly GMM toolbox for MATLAB by Kyriakoulis 
[2004]. 

An alternative solution in such cases is the use of Monte Carlo simulation methods 
to compute an otherwise intractable criterion function. The method of simulated mo-
ments approach is the simulated counterpart of the traditional GMM procedure and is 
applicable when the theoretical moments cannot be computed analytically. An exten-
sive survey of recent (mostly theoretical) results in the subject can be found in Li-
esenfeld–Breitung [1999]. 
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5. Testing in the GMM framework 

Most of the times there are three broad inference questions that are of interest 
to us:  

– Is the model correctly specified? 
– Does the model satisfy certain particular restrictions? 
– Which model appears to be more consistent with the data? 

The first question is particularly important. Recall that the population moment 
conditions were deduced from an underlying economic model and all our inference is 
going to be based on them. As our estimate is relying on the information contained in 
the moment conditions, it is crucial whether the original model is consistent with the 
data or whether it appears to be a good representation of the data. 

If the hypothesis of the model that led to the moment equations in the first place 
is incorrect, at least some of the sample moment restrictions will be systematically 
violated. This conclusion provides the basis for a test of the over-identifying restric-
tions and if we have more moments than parameters, we have scope for testing that. 
There is a very simple to compute statistic to use as an over-identifying restrictions 
test (the so-called J test) which is just the sample size times the value of the GMM 
criterion function evaluated at the second step GMM estimator 

( ) ( ) ( )( ) ( )1

0θ θ θ θn n n n
ˆ ˆ ˆnQ n f Est.Asy.Var n f n f

−′
⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎣ ⎦⎣ ⎦ ⎣ ⎦ . 

Notice that this is a Wald statistic and under the null  

( )0 0: θ 0iH E f x ,⎡ ⎤ =⎣ ⎦ , 

and it has a large sample Chi-squared distribution with q p−  degrees of freedom. 
However, the over-identifying restrictions test can be computed only in case of 
q p> , as in the exactly identified model the criterion function is zero. The reason 
for the importance and the popularity of this test is that it really examines the heart, 
the crux of GMM, and it is easy to calculate, as it is an obvious by-product of the es-
timation procedure. The statistic is ubiquitously reported in all applications involving 
GMM estimation just as reporting the log of the likelihood function in ML estima-
tion. We would like to stress that it is very important to do some kind of misspecifi-
cation test as in misspecified models the properties of the GMM estimator are sub-
stantially different which is likely to make all subsequent inferences misleading. 
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Example 10 – Test for over-identifying restrictions 
Consider the Poisson model from Example 9. Now we have 

( )λ 20 0 2694 5 388n n GMM
ˆJ nQ . .= = × = . 

As [ ]2χ 1nJ ∼ , there is only very weak evidence in favour of the 
population moment conditions so the model can be rejected.6 

The second inference question asks whether the model satisfies certain additional 
restrictions implied by economic and statistical theory that we could impose and what 
might tell us about economic behaviour. Fortunately all the well-known likelihood-
based testing procedures have their GMM counterparts with very similar implementa-
tions. The GMM-based LR test is computed by using nnQ instead of ln L  in the test 
statistic. The GMM-based Wald statistic is computed identically to the likelihood-
based one by using the GMM estimates instead of the ML estimates. The LM test is 
derived by the same logic applied to the derivatives of the GMM criterion function. 

The third question is model selection. The previously mentioned tests are appli-
cable for nested models but selection from a set of non-nested models would require 
specifying the distribution of the data generating process. 

Those interested in details should read the extensive discussion in Chapter 5 of 
Hall [2005]. 

6. Choice of moment conditions 

So far we have covered how we can exploit information from our moment condi-
tions in an efficient way but we haven’t mentioned what is the best set of moment 
conditions to be used. It turns out that there is quite a straightforward answer to this, 
although it won’t be very useful in terms of practical work. 

Maximum likelihood is the asymptotically efficient estimator in the class of consis-
tent and asymptotically normal estimators. Recall that we have already shown that ML 
is an MM type estimator based on the score function. Thus, if we use the derivatives of 
the log-likelihood function as moments, we will get an efficient estimator. Unfortu-
nately this is not feasible as in most economic settings the population distribution is 

 
6 However, the small sample size and the discrete nature of the Poisson distribution should raise some 

concerns. 
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unknown. Making an additional assumption on the underlying distribution places re-
strictions on the economic variables involved that might be unjustified by economic 
theory and that is exactly the kind of thing that GMM was designed to help us avoid. 

But what if we have more moment conditions than parameters? We might expect 
that more information never hurts but it turns out that sometimes in fact it doesn't help 
either. There are two main approaches in the literature to moment selection. One sug-
gests optimal moment condition selection based on asymptotic theory among the class 
of generalized instrumental variables. Unfortunately in many settings it is infeasible 
just like with the score function. The other strand of literature emphasizes practical data 
based moment selection introducing different selection criteria. Some results suggest 
that they may help avoid situations where the asymptotic approximation of finite sam-
ple behaviour is poor. For a detailed summary of recent results please see Hall [2005]. 

7. Actively researched topics 

All our reasoning and inferences so far were based on large sample theory. Two 
important questions arise: 

– How well does this theory approximate finite sample behaviour 
in the kind of places where we want to apply GMM? 

– Can we identify factors and aspects of model specification that 
appear to affect the quality of this approximation? 

Numerous studies try to address these issues in the literature. There are analyti-
cal approaches based on higher order asymptotics and simulation supported studies 
applied to generated artificial data from structures to which we typically fit our 
economic theories. A detailed discussion and summary of the topic can be found in 
Podivinsky [1999] or in Chapter 6 of Hall [2005]. Harris and Mátyás [2004] pro-
vide an extensive comparative analysis of different IV and GMM estimators, fo-
cusing on their small sample properties. These studies assess how well the methods 
perform and the findings are perhaps not that surprising. Loosely speaking, some-
times GMM works well but sometimes it does not. The main factors that were 
found to affect the quality of asymptotic approximation are: 

– form of moment conditions ( )θif x , . Basically, the more nonlin-
earity is involved, the less good the approximation is; 

– degree of over-identification ( )q p− ; 
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– interrelation between the elements of moment conditions; 
– quality of identification. 

How can we improve on the quality of inference then? There are three main 
strands of responses in the literature, two of which stay in the GMM framework and 
one suggesting another method. 

– If we would like to stick to first order asymptotic theory, the 
method of moment selection has to be revised. There are procedures 
for selecting those moments that contribute to parameter estimation 
and retain the ones that help and discard those that don’t add new in-
formation. 

– There are alternative considerations to develop a large sample 
theory and try to use this alternative asymptotic framework to come up 
with inference procedures: 

♦ weak identification – to tackle the case of uninformative mo-
ment conditions; 

♦ artificial resampling techniques, especially bootstrap – to im-
prove the accuracy of critical points used in tests; 

♦ alternative theory of many moment conditions asymptotics for 
cases when q p>> .  

– Step outside GMM. The problems arise because of the structure 
of GMM estimation so propose the generalized empirical likelihood 
class of estimators which contains the so-called continuously updated 
GMM and other empirical likelihood-based estimators. 

8. Concluding Remarks 

The econometrics literature offers the researcher a broad variety of estimation 
methods differing in the amount of information they use, ranging from fully parameter-
ized likelihood-based techniques to pure nonparametric methods and a rich variety in 
between. Choosing one appropriately is a respectful task as a correctly specified para-
metric model provides much better quality estimates than methods that assume little 
more than mere association between variables at one another. However, this efficiency 
comes at a cost of possibly false restrictions. From another standpoint, semi- and non
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parametric methods are much more robust to variations in the underlying data generat-
ing process and still may provide consistent estimates without imposing additional as-
sumptions. We have discussed that GMM is more robust to model specification than 
ML as it requires less information. This explains the increasing popularity of semi-
parametric estimation frameworks like GMM, as they allow to incorporate only as 
much restriction as economic theory implies. 

To state it differently, the GMM estimator is built on more general (assumed) 
characteristics of the population than in the classical likelihood-based framework, as 
it requires fewer and weaker assumptions. 
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