
STABILITY OF COMPOSITE ESTIMATORS: 
EXPERIMENTS WITH HUNGARIAN LFS DATA*  

ÖDÖN ÉLTETŐ – LÁSZLÓ MIHÁLYFFY 

Since the establishment of the Central Statistical Office in 1867, the endeavour to 
keep pace with  methodological developments of statistical bureaus and agencies leading 
the field has been a traditional feature of Hungarian official statistics.  Application of  
survey methodology in social and agricultural statistics in Hungary since the fifties of 
this century as well as the results of those applications  represented a standard which was  
acknowledged by the international community of official and survey statisticians. It is a 
commonplace that our period after the enormous changes in Mid-Eastern Europe and in 
the former Soviet Union in the early nineties  unceasingly creates new challenges for 
official statisticians, especially in the so-called transition countries like Hungary. One 
way to respond to those challenges is to  make no stop in improving and enhancing our 
methodological tools. The purpose of this paper is to take a step in this direction in the 
ranks of  Hungarian official statistics. 

Using composite estimators as a device to reduce the variance of direct sample 
estimates was  introduced  in the Current Population Survey (CPS) of the United States, 
in the beginning of the seventies.1  The  first version of those estimators labelled today as 
“the simple composite estimator”  is basically the same which is considered below as a 
possible technique to be included  in the processing of data of the Hungarian Labour 
Force Survey (LFS); the difference between estimators reflects that between sample 
designs.  Since the initial  “simple” stage, the composite estimator in the CPS has been 
the subject of many researches resulting in new and more efficient composite estimators.2 
Considering this development of the composite estimator and its possible introduction in 
the Hungarian LFS, it might seem somewhat odd to use the first generation of the 
method in this experiment rather than the last. The explanation of this approach is the 
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1 The  Current Population Survey. Design and Methodology. US Bureau of the Census. Technical Papers 40. 
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estimators to the current composite estimator. Proceedings of the Section on Survey Research Methods. American Statistical 
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following. On the one hand, the simple composite estimator fits well in the current 
conditions of the Hungarian LFS; on the other hand, without certain modifications of the 
current practice of collecting and processing data of the LFS, the implementation of a 
sophisticated composite estimator would be meaningless, since the conditions  of its 
efficiency are not fulfilled. 

Some properties of the Hungarian Labour Force Survey 

As was mentioned above, our purpose is to examine the conditions of  possible 
introduction of  a simple composite estimator  in the Hungarian Labour Force Survey 
(LFS). To this end it is useful to have a brief review of the survey  to see if it meets some 
basic conditions which  are inevitable to define a  composite estimator. 

The LFS is a quarterly survey of households, which is based on a stratified 
probability sample of dwellings. The sample consists of a self-representing and a non-
self-representing part, which were selected by a  two-stage and a three-stage design, 
respectively.  The dwellings or rather the  addresses in the working sample are selected 
from the stock of addresses of 8272 enumeration districts  (ED’s) of the 1990 population 
census; this collection of ED’s is called master sample and was designed to provide  a 
sufficient number of addresses for the LFS in the period  January 1992 – December 
2001. The current practice of data collection is as follows: 

–  data are collected monthly, in each month one-third of the sample ED’s are visited by the interviewers; 
–  in each month, one-sixth of the dwellings is replaced in the ED’s pertainig to the month in consideration; 
–  any household entering the sample at some time is expected to provide labour market information on six 

consecutive occasions, then leaves the sample for ever; 
–  depending on earlier information on non-response rates, three or four addresses are selected from each 

ED visited in a given month; 
– all individuals to be interviewed in the three or four dwellings within an ED visited currently have 

participated in the survey the same number of times (including non-responses), which means that they had 
entered the working sample at the same time, and will leave it together, too;  

–  in sampled dwellings, all persons aged 15–74 are eligible for the LFS. 

The following remarks are in order here: 

– while the above scheme is obviously complex, it guarantees that in principle there is an overlap of 5/6 
between the samples of two consecutive quarters, an overlap of 2/3 between consecutive half-years, and 1/3  
between same quarters of consecutive years; 

– the complexity has resulted from exogeneous factors such as budget cuts and not from some extravagant 
new tendencies in sampling techniques;  

– while it is possible to identify rotation groups in the system given, owing to the different number of 
dwellings selected from different ED’s (three in some cases and four in others), there may be significant 
differences among rotation groups, indicating that  composite estimators  based heavily on them may be not 
very successful; 

–  a  new redesign is underway to remove the asymetry among rotation groups. 

By the sample design, the Horvitz–Thompson estimator is the natural tool to estimate 
levels or totals from the LFS. Since dwellings are the ultimate units of  selection in the 
sample, primary sample weights are  expressed as ratios of total number of dwellings in a 
given geographical unit to that in the sample. To reduce non-response bias, final value of 
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sample weights is obtained  by adjustment with the method of generalized iterative 
scaling.3  

This method ensures that  adjusted estimates for totals of age-sex groups and 
dwellings  in geographical breakdown agree with the corresponding updated census 
counts. For further details on LFS design, see the following articles.4 

The simple composite estimator and its stability 

Composite estimators can be defined in different ways.  Our interest is focused on 
such  estimators which need for their definition sample data from at least two periods of 
time, say t and  t+1,  requiring also that the samples at those periods may have a non-
empty overlap. If this is the case, the definition is as follows: 

( ) ,ˆˆˆ1ˆ
11 tt

c
tttt

c
t YYYY ′Δ++−= ++ ααα                                                             /1/ 

where   
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With reference to the previous section,  it is easily seen that the conditions of  
introducing this estimator in the Hungarian LFS are met; recall in particular that the 
overlap of the samples between two consecuitve periods, i.e. quarters  amounts to 
approximately 5/6. 

In the first applications of estimator /1/ in the American CPS , the weight αt was chosen 
as 0.5  for each period, which was month in that case, and for all variables of  interest. The 
latter were totals of employment (E), unemployment (UE) and  civilian labour force (CLF) 
at national level as well as in certain breakdowns such as e.g. by race. Experience showed 
that that choice of αt reduced the variance of the variables, without destroying their 
consistency; e. g. levels of  (E) and (UE)  totalled the level of (CLF), no matter if simple 
direct or composite estimates were considered.  Breau and Ernst, studying the so-called 
generalized composite estimate,  have determined the coefficients – that correspond to the 
weight αt in the case of estimator /1/ – so that the variance of the composite estimate may 
be minimal. While to minimize variances is very attractive, and  application of this principle 
to simple composite estimators is particularly simple, this approach involves considerable 
   

3 Darroch, J. N. – Ratcliff, D.: Generalized iterative  scaling for log-linear models. Annals of Mathematical Statistics. 
1972. Vol. 43. 1470–1480. p.; Zaslavsky, A. M.: Representing local area adjustment by reweighing of  households. Survey 
Methodology. 1988. Vol. 14. 265–286. p.; Zieschang, K. D.: Sample weighing methods and estimation of totals in the 
consumer expenditure survey. Journal of the American Statistical Association. 1990. Vol. 85. 986–1001. p. 

4 Éltető, Ö.: The unified system of Household Surveys in Hungary. Paper presented at the seminar “International 
Comparison of Survey Methodologies”. Athens. 30 March–1 April 1992.; Mihályffy, L.: The Unified System of Household 
Surveys in the decade 1992–2001.  Statistics in Transition. 1994. Vol. 1. 443–462. p. 
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complexities. With this method, obviously different values are obtained for αt if  the 
variance of different characteristics, e.g. level of (E) and (UE) are minimized.  Though 
individual composite estimates would be of minimal variance in this way, their consistency 
in terms of additivity would be lost. An alternative approach to this would be to optimize 
only for one variable, probably for level of (UE), and to use αt determined in that way for 
all other variables (levels) involved. However, even this method  may lead to undesirable 
consequences; this can be illustrated by a comment of some US Bureau of Labor Force 
officials, who claimed that they would refuse a set of estimates if the price of  reducing 
variance of level of (UE) were accepting an increase in the variance of total (CLF). 

In the history of composite estimates,  little attention has been devoted to the issue of 
stability. By this we mean the following.  Suppose we consider a not too long time 
horizon,  e.g. eight consecutive quarters in the Hungarian LFS.  In the first period,  the 
composite estimate is set equal to the current direct sample estimate, and in periods 2–8 
the definition /1/ is used. The weight αt is determined by minimizing var ( )c

tY 1
ˆ
+ , the 

estimated variance of the composite estimate. The latter is a quadratic function of αt,  
thus minimization is done by differentiating  with respect  to αt, and setting the derivative 
equal to 0.  We shall call the composite estimate stable over the given time horizon if the  
sequence  

α α α1 2 7, ,  ...,  

shows the pattern of the sum of a constant mean and a random disturbance.  If stability 
were found for some variable, e.g. for level of (UE),  the average of the αt ’s would 
probably yield  a variance close to its minimum and could be used as a constant for some 
periods in the future. There is obviously no guarantee that this kind of stability, if once 
established, would last for ever;  in any case, the method described in the following 
enables the user  to monitor  the behaviour of αt over time.  

The method of examining stability 

Stability of the simple composite estimate will be examined below with Hungarian 
LFS data,  beginning with the first quarter of 1995 and completing with the fourth 
quarter of 1996, thus a time horizon of eight  consecutive  periods will be considered. 
The  reader may  observe that the method can easily be extended to the case where the 
number T of periods involved is different from 8. Note that the lengthy technical 
derivations below serve as the documentation of  our experimental computations,  hence 
readers with less interest in such details may skip to the next section on results. 

Because of the recurrent relation /1/, the simple composite estimator can be re-written 
as follows: 
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These relations can be verified by some algebra and induction. In what follows the 
above notations will be  simplified, some additional notations will be introduced, and 
then an algorithm for the computation of the composite estimates  in the periods 2, 3, ..., 
8 will be given. Let 
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furthermore 
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Finally, set ats  = 0 for all (t, s)  not occurring in relations /3a/–/3e/. Since $ $Y Yc
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with these notations we have 
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for  t = 1, 2, ..., 8, or, in vector-matrix form, 

•• = YAY c ˆˆ                                                                          /4’/ 

where the dot represents the subscript ranging from 1 to 8 in the case of the composite 
estimate and from 1 to 15 in the case of the variable $Yt .  A is the 8×15 matrix of the 
coefficients ats . If 
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is the covariance matrix of the variables $Yt ,  /4/ or /4’/ implies the following useful 
relations for t = 1, 2, ..., 8:  
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On the basis of /3a/–/3e/, /5/, /6/ and /7/,  the following algorithm can be given  for 
computing composite estimates and their variance. Note that  α1 in Step 1 and αt in Step 
4 are determined by the requirement that the composite estimate may have minimal 
variance at periods 2 and t+1, respectively. 

Algorithm 

1. α1
22 12 29

22 11 99 12 29 192 2 2
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5. Using /3a/–/3c/ and /3e/,  compute the coefficientsa a at t t+ + +11 1 2 115, , ,, ...,,    .  Set the coefficients  at s+1,  
not defined in this way equal to 0. 

6. If t < 7, increase  t  by 1, and go back to step 3.    

Results and some conclusions 

Under the assumption that eight consecutive quarters of  the LFS  are considered,  the 
following relation  was derived in the preceding section for composite estimates of some 
level or total: 

•• = YAY c ˆˆ                                                                          /4’/ 

where 

cY•̂
 – is a column vector consisting of the composite estimates in the  8  quarters in consideration, 

•Ŷ – is a column vector consisting of  direct sample estimates  in the  8  quarters  plus  the 7 estimates of 
changes  in level between consecutive quarters, 

A – is a  8×15 coefficient matrix transforming •Ŷ  into cY•̂ . 

The matrix A was determined by the requirement that variance of the composite 
estimate may be minimal in each quarter except for the first. This requirement implied 
that, except for the first  row, each entry of  A  became a function of the covariance 
matrix C  defined by /5/  of the variable of interest. It is worth while to point out that /4’/  
does work even if  A is not related  to the variable Y of interest through this optimality 
criterion.  For instance, if someone decides on minimizing the variance of  the level  of 
unemployment (UE) and on using the same weights in the composite estimates for the 
employed (E) as for the  (UE), he/she may proceed as follows. First, using data of the 
(UE) and the algorithm of the preceding section, the matrix A and  by /4’/ the composite 
estimates of (UE)  are computed. Next, using /4’/ with A obtained  as optimal for the 
(UE) and with data of the (E),  composite estimates of (E) are determined. The latter will 
be consistent with composite estimates of (UE),  but their variance may not be minimal; 
under unfavourable conditions, it can be even higher than that of the  corresponding 
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direct sample estimate. Eq. /7/ of the preceding section may be used to estimate the 
variance of composite estimates in this situation, too,  however, special care should be 
taken of the fact that the coefficient matrix  A comes from  optimizing for the (UE). 
while the covariance matrix C belongs to the (E). 

In the following, details and results of our actual computations are presented. The 
first set of computations related to quarterly estimates of level of unemployment, from 
the first quarter of 1995 to the fourth quarter of 1996.  

Table 1 shows the covariance matrix C for the (UE). Because of the complexity of 
direct sample estimates in the LFS, variances and covariances were estimated  by the 
stratified jackknife option of the VPLX software developed by Robert E. Fay at the US 
Bureau of the Census. The VPLX is a software product specifically designed for complex 
surveys in which variance estimation with traditional analytic methods is infeasible.  

Table 1 

Covariance matrix  of the variables for unemployed (all entries scaled by 10-6)   
Direct sample estimates* Quarterly changes in level** 

1̂Y  2̂Y  3̂Y  
4̂Y  5̂Y  

6̂Y  
7̂Y  

8̂Y  
1̂Y ′Δ  

2̂Y ′Δ  
3̂Y ′Δ  

4̂Y ′Δ  5̂Y ′Δ  
6̂Y ′Δ  

7̂Y ′Δ  

153.6 104.1   74.8   50.2   31.4   15.6     0.0     0.0   19.5     8.0     5.9     0.9     2.7     0.0     0.0 
104.1 143.2 103.5   71.2   47.6   25.7     4.9     0.0     9.1   14.5     9.3     2.9     3.7     0.3     0.0 
 74.8 103.5 153.4 105.5   73.8   47.6   15.7     5.4     3.9   19.2   16.3     5.5     4.8     0.9     1.0 
 50.2   71.2 105.5 151.6 107.0   73.5   29.6   14.4     2.5     5.9   17.5   14.8     7.1     4.7     1.9 
 31.4   47.6   73.8 107.0 173.9 119.0   55.2   29.3     1.6     1.8     9.5   32.2   15.9   13.3     5.0 
 15.6   25.7   47.6   73.5 119.0 164.7   85.7   50.5     0.2     1.5     7.4   16.0   11.2   19.9     9.3 
   0.0     4.9   15.7   29.6   55.2   85.7 158.8 101.1     0.0     1.0     1.3     6.7     6.2     9.0   22.4 
   0.0      0.0     5.4   14.4   29.3   50.5 101.1 143.0     0.0     0.0     0.9     1.9     2.8     1.8   14.2 
 19.5     9.1     3.9     2.5     1.6     0.2     0.0     0.0   35.5     4.4     1.0     0.3     0.4     0.0     0.0 
   8.0   14.5   19.2     5.9     1.8     1.5     1.0     0.0     4.4   42.1     5.7     3.4     0.2     0.2     0.0 
   5.9     9.3   16.3   17.5     9.5     7.4     1.3     0.9     1.0     5.7   40.9     5.7     0.4     0.8     0.4 
   0.9     2.9     5.5   14.8   32.2   16.0     6.7     1.9     0.3     3.4     5.7   58.1     8.3     4.0     1.3 
   2.7     3.7     4.8     7.1   15.9   11.2     6.2     2.8     0.4     0.2     0.4     8.3   32.9     2.1     1.9 
   0.0     0.3     0.9     4.7   13.3   19.9     9.0     1.8     0.0     0.2     0.8     4.0     2.1   42.3     6.5 
   0.0     0.0     1.0     1.9     5.0     9.3   22.4   14.2     0.0     0.0     0.4     1.3     1.9     6.5   46.1 

* Subscripts 1, 2, ..., 8 refer to the quarters 1/1995 to 4/1996, respectively. 
** 121

ˆˆˆ YYY ′−′=′Δ , subscripts 1 and 2 refer to the first and second quarters of 1995, etc. 

It is important to have some evidence on reliability of covariance estimates, and this 
is accomplished in Table 2, which contains size of the samples used to estimate the  
covariances. It is useful to note here that  the entry cij of  C  is estimated on a sample 
which is  the overlap of the samples used to estimate the variables iŶ  and jŶ  
repectively. Empty cells in Table 2 refer to cases where the corresponding samples have 
no overlap. Considering that the smallest entry in the table is 5.9 and this corresponds to 
5900 persons,  we may assume that  on the basis of our samples reliable covariance 
estimates can be computed. We also note that determining the data sets representing the 
overlaps of samples used in covariance estimates needed considerable amount of 
computer time and tremendous space on the hard disk. Table 3 shows the coefficient 
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matrix A transforming direct sample estimates into composite estimates; it is probably the 
structure which may deserve attention here.  

The matrix consists of two blocks which are lower tiangular matrices, and the 
subdiagonal of the second block contains the weight αt in the composite estimate in the 
consecutive quarters. 

Table 2 
Size of intersections of samples used in variance-covariance computations  

(in thousands) 

Quarters 1995 Quarters 1996         Quarters 1995 1995   Quarters 1996 

1 2 3 4 1 2 3 4 1–2 2–3 3–4 4–1 1–2 2–3 3–4 

 51.9  43.3  35.4  27.9  19.9  13.0  43.3  35.1  27.6  19.6  12.8   
 43.3  51.1  42.5  34.8  26.6  19.5   6.0  43.3  42.6  34.5  26.1  19.3   6.0  
 35.4  42.5  50.4  42.1  33.5  26.3  12.5   5.9  35.1  42.5  42.1  32.9  26.1  12.4   5.9 
 27.9  34.8  42.1  49.9  40.7  33.4  19.2  12.3  27.6  34.5  42.1  40.2  33.1  19.1  12.3 
 19.9  26.6  33.5  40.7  49.7  41.8  27.1  19.7  19.8  26.3  33.3  40.9  41.8  27.0  19.7 
 13.0  19.5  26.3  33.4  41.8  49.9  34.8  27.1  12.8  19.3  26.2  33.3  41.8  34.8  27.0 

  6.0  12.5  19.2  27.1  34.8  49.6  41.4 5.9  12.4  19.2  27.0 34.8 41.5 
   5.9  12.3  19.7  27.1  41.4  49.5 5.9  12.4  19.6  27.0 41.4 

 43.3  43.3  35.1  27.6  19.8  12.8 43.3  35.1  27.3  19.4  12.7   
 35.1  42.6  42.5  34.5  26.3  19.3   5.9 35.1  42.6  34.5  25.9  19.1   5.9  
 27.6  34.5  42.1  42.1  33.3  26.2  12.4   5.9  27.3  34.5  42.1  32.9  26.0  12.4   5.9 
 19.6  26.1  32.9  40.2  40.9  33.3  19.2  12.4  19.4  25.9  32.9  40.9  33.3  19.2  12.3 
 12.8  19.3  26.1  33.1  41.8  41.8  27.0  19.6  12.7  19.1  26.0  33.3  41.8  27.0  19.6 

  6.0  12.4  19.1  27.0  34.8  34.8  27.0 5.9  12.4  19.2  27.0  34.8  27.0 
      5.9  12.3  19.7  27.0  41.5  41.4   5.9  12.3  19.6 27.0 41.5 

Table 3 
The Matrix  A  

Transforming direct sample estimates and quarterly changes 
pertainig to unemployed to composite  estimates 

Direct sample estimates* Quarterly changes in level** 

1̂Y  2̂Y  3̂Y  
4̂Y  5̂Y  

6̂Y  
7̂Y  

8̂Y  
1̂Y ′Δ  

2̂Y ′Δ  
3̂Y ′Δ  

4̂Y ′Δ  5̂Y ′Δ  
6̂Y ′Δ  

7̂Y ′Δ  

1.0000  .0  .0  .0  .0 .0  .0  .0  .0  .0  .0  .0  .0  .0  .0 
 .2073  .7927  .0  .0  .0  .0  .0  .0  .2073  .0  .0  .0  .0  .0  .0 
 .0593  .2268  .7139  .0  .0  .0  .0  .0  .0593  .2861  .0 .0   .0  .0  .0 
 .0161  .0614  .1933  .7292  .0  .0  .0  .0  .0161  .0775  .2708  .0  .0  .0  .0 
 .0050  .0190  .0598  .2254  .6908  .0 .0  .0  .0050  .0240 .0837 .3092  .0  .0  .0 
 .0015  .0057  .0181  .0681  .2088  .6978  .0  .0  .0015  .0072 .0253 .0934 .3022  .0  .0 
 .0005  .0019  .0061  .0230  .0706  .2360  .6618  .0  .0005  .0024  .0086  .0316  .1022  .3382 .0 
 .0001  .0005  .0017  .0063  .0194  .0647  .1814 .7259 .0001 .0007 .0023  .0087  .0280  .0927  .2741 

Note. The rows correspond to composite estimates ccc YYY 821
ˆ,...,ˆ,ˆ . 

*  Subscripts 1, 2, ..., 8 refer to the quarters 1/1995 to 4/1996, respectively. 
** 121

ˆˆˆ YYY ′−′=′Δ , subscripts 1 and 2 refer to the first and second quarters of 1995, etc. 
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The results – direct sample and composite estimates and standard errors for the level 
of unemployment in the quarters 1995–1996 – can be found in Table 4. While there is 
definite decrease in the value of standard error as  the result of compositing, the extent of  
improvement is rather modest. 

 Table 4  

Estimates of the level of unemployment from the Hungarian LFS 
Period Direct sample estimate Composite estimate 

 (Quarters)  Data Standard Error  Data Standard Error 

 
1995 

First 435 948       12 395    435 948       12 395 
Second 413 304       11 966     413 398       11 703 
Third 416 895      12 387     414 747       11 965 
Fourth 410 960        12 313     409 432       11 890 
 

1996 
First 425 420        13 186     42 5981       12 669 
Second 399 701       12 833     398 666       12 283 
Third  404 828       12 602     397 639        11 572 
Fourth  375 627        11 959     376 161       11 413 

The behaviour of the weight αt showed the following pattern over time: 

2d Quarter 1995            ⎯⎯⎯⎯⎯→                              4th Quarter 1996 
0.2073      0.2861     0.2708      0.3092      0.3022      0.3382       0.2741     

thus it may be regarded as stable. Over a  period of moderate length in the future, the use 
of αt = 0.3  may be recommended. This choice would probably result in a value close to 
the minimum of the variance in the case of composite estimate of the level of 
unemployment. 

 Table 5 

 Estimates of the level of employment from the Hungarian LFS 

Period Direct sample estimate Composite estimate 
 (Quarters)  Data Standard Error  Data Standard Error 

 
1995 

First 3 600 001 49 701 3 600 001 49 701 
Second 3 625 227 50 930 3 628 048 48 028 
Third 3 656 034 53 025 3 660 898 47 102 
Fourth 3 675 000 53 517 3 672 254 46 279 
 

1996 
First 3 578 796 50 999 3 598 358 45 718 
Second 3 615 967 51 315 3 623 733 45 009 
Third 3 648 239 51 323 3 652 138 41 042 
Fourth 3 702 475 51 735 3 698 408 41 360 
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Of the computations concerning level of employment, only the results are reproduced 
here, since  there is nothing new in the properties of the matrices A and C in comparison 
with the previous case. It is remarkable that  the variance-reducing effect of compositing 
is far more relevant here than in the case of level of unemployment. (See Table 5.) 
Unfortunately, the weight αt seems to be far from being stable in this case, as is shown 
by the pattern of  its varying over time: 

2d Quarter 1995              ⎯⎯⎯⎯⎯⎯→                     4th Quarter 1996 
0.4924       0.6200        0.6302        0.4442         0.6180        0.5523        0.7035 

A possible reason for this phenomenon is some imperfection  in the current practice 
of processing the data of  the LFS.  There is some evidence that stability would  be found 
here too, if that imperfection were eliminated; hopefully, this improvement would not 
destroy the stability found in the previous case.     

 


