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Pricing an insurance product covering motor third-party liability is a major challenge for ac-
tuaries. Comprehensive statistical modelling and modern computational power are necessary to 
solve this problem. The generalised linear and additive modelling approaches have been widely 
used by insurance companies for a long time. Modelling with modern machine learning methods 
has recently started, but applying them properly with relevant features is a great issue for pricing 
experts. This study analyses the claim-causing probability by fitting generalised linear modelling, 
generalised additive modelling, random forest, and neural network models. Several evaluation 
measures are used to compare these techniques. The best model is a mixture of the base methods. 
The authors’ hypothesis about the existence of significant interactions between feature variables is 
proved by the models. A simplified classification and visualisation is performed on the final model, 
which can support tariff applications later. 
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Motor third-party liability (MTPL) insurance covers the risk of causing dam-

age to a third party with a motor vehicle. The liability is owned by the faulty driver, 
but the MTPL insurance transfers the financial risk from the individual to the insur-
ance company. While CASCO- (casualty and collision) type constructions pay insur-
ance benefits to the owner of the insured car, MTPL insurance pay to third parties, 
called claimants. 

The types and amounts of damage can spread over a wide range. Property 
damage and bodily injuries are typically separated. Claims from small crushes during 
parking to large accidents with many broken cars and other damage to the environ-
ment can also cause property damage. Serious claims usually couple with bodily 
injuries varying from suffering minor bruising to becoming disabled or deceased in 
an accident. In some cases, the claimant loses the ability to work or lifetime extra 
costs are incurred due to the accident, indicating a demand for life-long annuities. 
The financial consequences of the latter examples can be enormous: multi-million-
euro claims are possible.  

Consequently, it is not surprising that in many countries it is compulsory to 
have MTPL for vehicle owners. Vehicle insurance (i.e. relevant legislation, insurance 
coverage, and structural specifics) may vary from country to country. The modelling 
described in this study is based on Hungarian data, and the application is made for 
the Hungarian MTPL structure; however, the results can be applied to other countries 
as well. 

1. MTPL pricing and tariffs in general  

The risk of causing an accident with a motor vehicle (in other terms, having an 
MTPL claim) depends on several factors related to the driver’s profile and the char-
acteristics of the insured car. For example, young drivers with high-performance cars 
or drivers living in suburbs with high annual mileage usually cause claims more 
frequently, so they are more risky drivers according to MTPL insurances. Therefore, 
the price of the MTPL insurance should be differentiated based on several factors for 
which the use of statistical modelling is essential in the pricing process. 

Some important variables are described below that can influence the claim-
causing risk, hence, they are usually tariff elements of MTPL insurance. As powerful 
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cars are viewed as riskier, the performance (kW) and the cubic capacity (cc) of the 
vehicle are usually taken into consideration in pricing. Insurance companies have 
their own data about risks, and published tariffs show that the manufacturing year, 
brand, and fuel type of the car also influence the claim-causing probability. Various 
characteristics of the driver, namely, age, residence, driving experience, and expected 
annual mileage are also important and can be potential tariff factors as well. Finally, 
the bonus-malus class of the policyholder must also be mentioned. The bonus-malus 
system is used to classify the drivers according to their individual claim history.  
If a driver does not have a claim in one year of insurance coverage, it results  
in a forward step in the system. In case of causing a claim, a negative step is applied.  
The rules of these systems are usually defined by country laws and insurance compa-
nies incorporate the bonus-malus class as a tariffing factor. The above list is not 
complete, and other influencing variables can also be used. The results of this study 
verify the use of several mentioned variables. 

In the pricing process, the goal of statistical modelling is to determine the con-
nection between the mentioned variables and MTPL claims. Usually, one-year long 
periods are analysed with the premium also being calculated for one year. The fol-
lowing two features are essential for profiling insurance contracts (Ohlsson–
Johansson [2010]): 

– claim frequency: the number of claims divided by the in-force 
years of insurance coverage (cumulative data of individual policies), 

– claim severity: the total claim amount divided by the number 
of claims. 

 
The pure premium, known as the net premium, is the product of the claim fre-

quency and the claim severity. This amount covers the cost of claims of the group in 
the analysed period (per policy and per year). The net premium, however, does not 
contain other expenses and profits of the company, which indicates the next step of 
pricing, called gross premium calculation. 

Statistical modelling can usually be performed separately for claim frequency 
and claim severity, with the goal of determining the dependencies with the tariffing 
factors (variables). For such problems, regression models are often used in the statis-
tics. According to Ohlsson and Johansson [2010], linear regression is not suitable for 
this problem because the assumed normally distributed errors are not reasonable  
for either the pieces or the amounts of insurance claims. Multiplicative models usual-
ly fit the insurance claim experience better than linear ones. A generalised linear 
model (GLM) can be a more sophisticated framework that can handle the aforemen-
tioned problems. Instead of the normal distribution, GLM uses a more general class 
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of distributions and a more general dependency structure can be modelled among 
variables than in the case of simple linear regression (Ohlsson–Johansson [2010]). 

It is not surprising that GLMs and the slightly more general, generalised addi-
tive models (GAMs; discussed later) are frequently used in MTPL pricing; similar 
techniques are applied worldwide for insurance tariff calculations. There are special-
ised software programs for actuarial pricing that are capable of this type of modelling 
and defining the optimal MTPL tariff structure according to the chosen model. 

GLMs and GAMs provide a general and widely applied framework for tariff 
optimisation; however, owing to the fixed probability distributions and the lack of 
automatically handled interactions, they carry the risk of underfitting. Therefore, it 
can happen that the GLMs and GAMs do not program results in the best model for 
later claim experiences. This study analyses the possibility of providing a better fit-
ting approach with machine learning (ML) methods, such as random forests (RFs) or 
neural networks (NNs). This is a new approach in insurance pricing that has been 
examined by some authors and has been applied by some companies; however, the 
widespread use of these techniques is not yet common in the sector. 

It is important to note that the understanding and formalisation of the models 
can also be important viewpoints since the main application is tariff making.  
For example, in Hungary, the MTPL tariffs must be published by companies,  
so black box algorithms are not applicable. This study only analyses claim-frequency 
modelling; other elements of tariffing could form part of future research. 

2. Data and applicable data transformation  
for claim modelling 

The data used for the analysis were derived from a Hungarian non-life insur-
ance company’s MTPL database. Contractual and claim data from two calendar 
years1 were used as the initial database. Contractual data were identified using con-
tract numbers. The start, end, and cancel dates of the contract, car data, driver data, 
and discount data (discounts the policyholder demands from the premium tariff) were 
collected. Claim data were identified using the claim number linked to the contract 
number. Data about the date of the claim and the date of the reporting, and data about 
the total of the claims (divided into paid and outstanding parts) were collected. 

The most important variables are listed below from the total 20 features, with 
their abbreviations in italics. Some data were distorted, and values of some variables 

 
1 The calendar years are not disclosed due to business secrecy. 
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were exchanged because of business-secret considerations; however, this did not 
influence the application of the models. 

The target variable for our analysis is binomial: the policy caused claim in the 
analysed policy year or not (binomial) – claimBool. This target variable will be pre-
dicted by selected ML models that consider several client-, policy-, and vehicle-
related factors:  

– age group of the client (multinomial) – AgeGroup, 
– region code of residency (multinomial) – RegionCode, 
– actual bonus-malus class of the client (multinomial) – BM, 
– performance (kW) class of the car (multinomial) – KWclass, 
– brand of the car (multinomial) – VehicleType, 
– cubic capacity (cc) of the car (numeric) – VehicleCubicCapacity, 
– fuel type of the car (multinomial) – VehicleFuel, 
– manufacturing year of the car (numeric) – VehicleManufactureYear, 
– sales channel of the contract (multinomial) – VehicleSalesChannel,  
– demanding child discount (binomial) – Child, 
– demanding multiple cars in family discount (binomial) –  

MultipleCarsinFamily, 
– demanding experienced driver discount (binomial) –  

ExperiencedDriver. 
 
In the case of some variables, it was useful to transform them into a limited 

range. Categorical variables, such as the region codes, were classified into higher-
level regions, and the age of the customer was transformed into age groups. These 
classifications were done in line with the company’s analysed tariff practices. 

In the initial dataset, applications of several data cleansing methods were  
needed. The missing and unrealistic values make up less than 0.3% of the observa-
tions; these policies were excluded from the dataset. Extreme outliers were filtered 
via Tukey’s outer fences as a cut-off value (upper quartile ± 3 * interquartile range)  
(Abzalov [2016]). 

The goal of the net premium calculation is to determine the expected yearly 
claim volume of a contract which can be considered as the net yearly price of the 
insurance (without the company’s costs and profit). Consequently, for further appli-
cation, contractual and claim data must be transferred to a yearly basis as follows:  
the first year of insurance coverage lasts from the start date of the contract to the first 
anniversary, the second year lasts from the first to the second anniversary, and so on. 
These periods are called policy years. 

The contractual data used were cut into policy-year pieces per contract, so in 
the transformed database, each record contains data about one policy year of a  
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contract. Policy data can change from one policy year to another, for example, bo-
nus-malus classes and age are constantly changing, which must be handled to have 
an unbiased database for pricing. Records with policy years starting in a fixed calen-
dar year were used for later analysis. 

After obtaining the policy-year-based contractual database, claim data can be 
joined to it. It must be examined with the help of claim number and claim date, 
whether a policy caused a claim in a policy year or not. If no claim corresponds to 
the period, then the actual policy year record obtains a claim figure of zero, other-
wise, the corresponding claim data are shown. 

It can also occur that, in the case of a policy, the number of elapsed years is not 
an integer (e.g. because the observation period is over or the policy was cancelled). 
The insurance risk for a period shorter than a year is naturally lower than the risk for 
a whole year, so the length of the period from a policy year spent in insurance cover-
age must be taken into account in the premium calculation. This is referred to as a 
yearly unit. It is assumed that insurance risk is linearly proportional to yearly units in 
the case of periods shorter than one year. 

With the application of these transformations, we obtained a dataset of more 
than 200,000 observations and more than 20 variables for the examined period.  
The database described above is a suitable tool for claim-frequency modelling. 

3. Methodology for the claim modelling analysis 

This section describes the methodology for the analysis: the applied supervised 
learning models, feature selection, and evaluation methods. 

3.1. MTPL claim modelling as a supervised learning problem 

ML is a group of algorithms and statistical models that can perform a specific 
task without using explicit instructions, relying only on patterns and inference  
(Neal [2007]). It is seen as a subset of artificial intelligence. ML algorithms build a 
mathematical model based on sample data, known as ‘training data’, to make predic-
tions without being explicitly programmed to perform the task (Koza et al. [1996]). 

ML tasks are classified into several broad categories. In supervised learning, 
the algorithm builds a mathematical model from a set of data that contains both the 
inputs and the desired outputs (Russell–Norvig [2010]). 

In the premium calculation for MTPL insurance, the most important factors for 
the net premium are the probability of a policy to cause claims in the insurance peri-
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od and the expected total of the claims. Determining whether a policy causes claim in 
a policy year is an analogous problem to object recognition in images or filtering 
emails, as in all of these cases, we have a well-specified output target variable that is 
binary: Does the image contain the object? Is this email a spam? Does this policy 
cause claims? Similar problems arise in other areas of the insurance business as well. 
For instance, Boodhun and Jayabalan [2018] also apply supervised learning methods 
for underwriting in life insurance. 

Binary output labels or target variables can be predicted using a classification 
model, which is a type of supervised learning. The standard output for classification 

models is a probability vector that gives the  Y TrueP  probabilities for a Boole-

an Y target variable based on a set of feature variables for the observations (Mohri–
Rostamizadeh–Talwalkar [2012]). Therefore, if we encode the claim information for 
a portfolio of MTPL policies into a claimBool variable where True = the policy 
caused claim in a given year and False = the policy did not cause claim in a given 
year, then we can easily fit a supervised learning model to this target variable based 
on some features of the policies. In this way, we can obtain the yearly claim proba-
bilities for each individual policy in our portfolio, which can be utilised for individu-
al-level pricing by the insurance company. 

It is important to note that more than one claim can be made in each period. 
According to our data, we had only a few of this kind of event ( 4.61%z   where 

1z claim events claimBool   ).  

The first modelling trials led us to realise that using models with binomial tar-
get variables is much better than multinomial ones in terms of the goodness of fit and 
simplicity. In the later analysis, we used binomial models, so if the claimBool varia-
ble is true, it can also sign more than one claim. In the final step of tariff making, we 

propose adjusting the probabilities of  1claimBool P  with a  1 z multiplicator. 

There can also be claims incurred but not reported (IBNR). A similar technique 
can be used to handle these events in the tariff-making step by estimating the y% of 
IBNR claims. A simple method for estimating IBNR claim events is the chain ladder 
method (Matvejevs–Malyarenko–Matvejevs [2014]). 

3.2. Description of the applied supervised learning models 

In this study, we apply GLMs and GAMs that are widely used methods in ac-
tuarial claim modelling. We also utilise two other ML methods (RF and  
NN models), which are not yet widespread among insurance companies, but in recent 
literature, there are some promising results in the sector. Most notably, Noll,  



MODELLING MTPL INSURANCE CLAIM EVENTS 41 

HUNGARIAN STATISTICAL REVIEW, VOLUME 4, NUMBER 2, PP. 34–69. DOI: 10.35618/hsr2021.02.en034 

Salzmann, and Wuthrich [2018] showed on French MTPL claim data that a simple 
GLM does not capture interactions of feature components appropriately, whereas 
tree-based methods and NNs are able to address these interactions more successfully. 

Our goal is to test the robustness of Noll, Salzmann, and Wuthrich [2018] results 
on claim data from a very different region and to propose a stacking or voting model 
that provides a better fit than the individual ones. A technique for obtaining the results 
of a more complicated supervised learning model is also introduced. Further methodo-
logical techniques for later analysis are also described in this section. 

3.2.1. GLMs and GAMs 

In selecting the exact classification models to apply, we first considered the 
most recent literature on the subject. Supervised learning is commonly applied by 
actuaries when estimating claim probabilities with respect to some feature variables 
of the GLM. Some recent examples of the application of GLMs in MTPL pricing  
are mentioned by Kafková and Krivánková [2014], Giancaterino [2016], and 
Henckaerts et al. [2018]. General insurance applications of GLMs are demonstrated 
by Gray and Kovács [2001], in addition to a motor claim analysis with application 
for mortality modelling. 

In this subsubsection, we provide a summary of the main characteristics  
of GLMs. For a broad introduction to GLMs, we refer to Harris, Hilbe, and  
Hardin [2014]. The main attribute of GLMs is the generalisation of the probability 
distribution of the target variable. GLMs extend the framework of linear regression 
models with a normal distribution to the class of distributions from the exponential 
family. It allows the modelling of many variable types (counts, frequencies, etc.).  
A link function makes a connection between the mean and a linear function of the 

feature variables. The link function  g μ  is a monotonic differentiable function of 

the form  g μ  x β  where x  is the vector of feature variables and β  is the vector 

of regression parameters. For our target variable with a binomial distribution, we use 

the logit link function    ln (1 ) .g μ μ μ   

In a binomial distribution  μ Y True p  P  from the GLM with a logit 

link, we can get the desired probabilities for claim events by 

    exp 1 exp .p   x β x β  Thus, the only parameter of the binomial distribution 

to be estimated is the β  vector. This can be solved through maximum likelihood 

estimation with the application of the Newton-Raphson method for numerical opti-
misation, introduced by Harris, Hilbe, and Hardin [2014]. 
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The major appeal of GLMs for actuaries is that marginal feature effects can be 

obtained very easily by obtaining the values from the  exp β  vector. This infor-

mation can be used in pricing to set premium multipliers based on the features of the 
policies. Furthermore, parameter significance can also be easily tested using a classic 
Wald test. 

The performance of a GLM, however, in predicting claim event probabilities 
can be low, as using only linear combinations of features can be restrictive. There-
fore, we should extend the GLM framework to consider non-linear effects and inter-
actions as well. Interactions can be represented in a GLM by multiplying the varia-
bles that we wish to interact with. Interactions in the case of categorical features can 
be considered via cross-products between dummy variable encodings. In contrast, 
dealing with non-linear effects of continuous features leads to GAMs, introduced by 
Hastie and Tibshirani [1987]. 

For the estimation of the smooth functions for each feature, we utilise the thin 
plate spline framework proposed by Wood [2003] as this solution does not require 
the choice of the number and form of basis functions in the non-linear spline model-
ling. For the implementation of the GAMs, we applied the mgcv (mixed GAM com-
puting vehicle) R package developed by Wood [2017]. 

3.2.2. RF method 

In the very recent literature, some promising applications of tree-based  
ML models in insurance pricing have appeared. We were mainly inspired by the 
results of Henckaerts et al. [2019], who applied RF models for claim event predic-
tion of Belgian MTPL policies with great success. We aimed to test whether the  
RF method’s good prediction performance was preserved on our Hungarian data. 

Decision trees partition data based on yes-no questions can predict the same 
target value for each member of the constructed subsets. This value is usually the 
mean of the target variable in a subset. In our case, as we average a Boolean target, 

this method results in an empirical  Y True p P  estimate. A popular approach 

to construct decision trees is the classification and regression tree (CART) algorithm, 
introduced by Breiman et al. [1984]. In the CART algorithm, two parameters control 
the construction of a tree. The maxdepth parameter sets the maximum depth of any 
node of the final tree with the root node counted at a depth of zero. The complexity 
parameter ( cp ) informs the program that any split which does not improve the fit by 

cp will likely be pruned off by cross-validation, hence, the program does not need to 
pursue it. A lower cp results in more complex decision trees. 
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RFs (Breiman [2001]) are ensemble techniques that combine multiple decision 
trees. They reduce the variance of a single tree by averaging the forecasts of multiple 
trees on bootstrapped samples of the original data. This stabilises the prediction and 
improves the predictive performance compared with a single decision tree. 

The number of used trees (T) was chosen to be 500 at first and increased fur-
ther until an additional decrease in the cross-validated loss function was achieved 
(Breiman [2001]). In our study, we apply a loss function, called deviance, as sug-
gested by Venables and Ripley [2002]. The deviance is defined as 

     , 2 lnˆ ˆD y y L y L y      likelihood ratio where  ˆL y  is the model likelihood 

and  L y  is the likelihood of the saturated model (i.e. the model with the number of 

parameters equal to the number of observations). For competing models of fit, the 
best model obtains the lowest deviance value on the holdout data. The holdout data 
were selected via 10-fold cross-validation in our study. In 10-fold cross-validation, 
the original sample was randomly partitioned into 10 equal-sized subsamples. Of the 
10 subsamples, a single subsample was retained as the validation data for testing the 
model and the remaining nine subsamples were used as training data. The cross-
validation process was then repeated 10 times, with each of the 10 subsamples used 
exactly once as the validation data. 

The CART algorithm was implemented in the rpart (recursive partitioning and 
regression trees) R package developed by Therneau et al. [2015]. The randomForest 
package, developed by Liaw and Wiener [2002], is readily available to fit RFs for 
standard regression and classification problems. 

The RF algorithm does not make any assumptions regarding the relationship 
between features and targets, which usually results in good prediction capabilities. 
However, it was not possible to obtain the marginal effects of each feature. 

We can still rank the features according to their importance in the model’s pre-
diction. We can measure the importance of a specific feature lx  in a decision tree by 

summing the improvements in the loss function over all the splits on .lx  We normal-

ise these variable importance values such that they sum to 100%, giving a clear idea 
about the relative contribution of each variable in the prediction. We can generalise 
this approach to ensemble techniques by averaging the importance of variable lx  

over the different trees of the RF. 

3.2.3. NN models 

The next type of supervised learning model to be applied is NNs. These kinds 
of models are becoming increasingly popular for solving image, handwriting,  
and other pattern-recognition tasks (Lecun–Bengio–Hinton [2015]). They also had 
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some successful applications in estimating claim probabilities for MTPL policies on 
US (United States) data, especially with pay-as-you-go solutions (Yeo [2011]). 
Boodhun and Jayabalan [2018] successfully applied NNs for life insurance under-
writing. The ability of NNs to handle successfully complex patterns between feature 
sets and the target might also be useful in detecting complicated interactions between 
our features that other models might miss. (For a detailed description of NNs,  
see Hastie–Tibshirani–Friedman [2009], Hajek [2005].)  

A multi-layer perceptron (MLP) is used for introducing the concept of NNs for 
a K-class classification problem where the kth target class is represented by a dummy 
variable ,kY  but the principle is the same for a single Boolean target variable.  

(See Figure 1.) Derived or hidden features mZ  are created from linear combinations 

of the inputs (X is the matrix of the p feature variables) with a sigmoid link function 

  ( )( ) 1 1 .vσ v e    The target kY  is modelled as a GLM of the mZ  variables 

with a logit link function. 

Figure 1. A schematic single hidden layer NN 

 

Note. 1, , pX X  are input variables, 1, , mZ Z  are derived or hidden features, and 1, , kY Y  are the 

dummy variables representing the categories of the target variables. 
Source: Hastie–Tibshirani–Friedman [2009]. 

 
The NN model has unknown parameters called weights (the coefficients of the 

GLMs that define the network), and we seek values for them that make the model fit 
the training data well. We used a backpropagation algorithm for the training (Hastie–
Tibshirani–Friedman [2009]). 
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NNs are quite sensitive to the unit of measurement of continuous features 
(Hajek [2005]). To handle this, every continuous feature is normalised to a (0, 1) 
scale before applying the NN model. 

The most important parameters of MLPs are the number of hidden layers and 
the number of latent variables in each layer. There is no well-defined or heuristic 
algorithm for the choice of network structure. Usually, two or three competing net-
work structures are tested on a separate validation set, and the one that yields the 
minimal prediction error is chosen (Hastie–Tibshirani–Friedman [2009]). 

The exact marginal effects of the features cannot be expressed even in a single 
hidden layer network because of the large number of interactions between the feature 
variables and the latent variables in the hidden layers. However, we can obtain a 
measure of predictor importance by recording, during training, how much the contri-
bution of feature lx  to the loss-function gradient updates in an average iteration 

during the run of the backpropagation algorithm (Hajek [2005]). 
We apply an R implementation of NNs in the mlp function from the RSNNS 

(Stuttgart Neural Network Simulator in R) package, developed by Bergmeir and 
Benítez [2012]. 

3.3. Feature selection 

To boost model performance by avoiding overfitting, we execute feature selec-
tion. As in NNs and RF models, the marginal effects of features cannot be  
determined. We apply a simple heuristic algorithm called recursive feature elimina-
tion (RFE). RFE, described in Algorithm 1, only requires an importance measure to 
be assigned to each feature. Both RFs and NNs can provide a measure of variable 
importance in prediction. 

The algorithm has an optional step (line 4.4), where the predictor rankings are 
recomputed in the model based on the reduced feature set. Svetnik et al. [2004] 
showed that, for RF models, there was a decrease in performance when the rankings 
were recomputed at every step. For this reason, in our case, line 4.4 was not executed 
for RFs. We skip line 4.4 for NNs as well, because its nature is similarly complex to 
that of RFs. Furthermore, according to Svetnik et al. [2004], the recalculation can 
only improve performance in cases where the initial rankings are not adequate, like 
in the case of GLMs or GAMs with highly collinear features, as the Wald test has a 
biased p-value estimate (which is used for feature ranking in these models). 

We use our own implementation of RFE in R language to skip the step at line 4.4. 
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Algorithm 1 (Kuhn [2011]) 

1. Tune/train the model on the training set using all predictors. 
2. Calculate model performance. 
3. Calculate variable importance or rankings. 
4. For each subset size ,iS  1, , ,i p   do 

4.1 keep the iS  most important variables, 

4.2 pre-process data (optional), 
4.3 tune/train the model on the training set using iS  predictors, 

4.4 recalculate the rankings for each predictor (optional). 
end 

5. Calculate the performance profile (which is deviance in  
our case) over the .iS  

6. Determine the appropriate number of predictors. 
7. Use the model corresponding the optimal .iS  

 
In the case of GAMs, we can take advantage of the marginal effects of the fea-

tures from the models. With this extra information, we can use more sophisticated 
solutions for feature selection in GLMs. We chose to apply sure independence 
screening (SIS), as it is the most suitable for large datasets with a large number of 

features or with 510n   (Fan–Lv [2018]). The SIS method for feature selection is 

presented in Algorithm 2. 

Algorithm 2 

1. Let d be the number of all possible features in the GLM.  
Let m be the number of features to be retained in a SIS iteration.  
m should be chosen based on the number of records in the data matrix 
and the RAM capacity of the computer. 

2. Estimate the model containing all d features. 

3. Obtain the Wald test statistic for each feature denoted by ˆ
jL  

for the jth feature. 

4. Determine the  ˆ ˆ1, :  is among the top onesjj d L m     set. 

5. Estimate the model using only the features from ̂  with a 
lasso-like regularisation method (Tibshirani [1996]). This estimates 
the coefficients of irrelevant features to be zero. 
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6. Form the ̂  set by selecting the features with non-zero coef-
ficients in the model estimated in step 5. 

7. Estimate the model containing all features from ˆ .  

8. Repeat steps 2–6 until the elements in ̂  do not change. 
 

We used the SIS algorithm’s implementation in the R package (see also  
Saldana–Feng [2018]). 

3.4. Methodology for model evaluation and comparison 

While examining the most recent literature on non-life insurance pricing with 
supervised ML models, we found that the models were only assessed through the 
deviance measure. This is the main methodology of evaluation in Henckaerts  
et al. [2018], [2019]; Yeo [2011]; Kafková–Krivánková [2014]; Giancaterino [2016];  
Verbelen–Antonio–Claeskens [2018]; and Noll–Salzmann–Wuthrich [2018].  
The listed authors compared deviances on a separate test set or used an average devi-
ance from a 10-fold cross-validation. However, there are some other approaches used 
in the literature: supervised learning models are fitted on French MTPL data and 
model performance is analysed with concentration and Lorenz-curves by Denuit, 
Sznajder, and Trufin [2019]. 

Comparing the deviances of different models works well when the task is to 
compare different setups for the same model family and to select the best alternative. 
For example, deviance is an appropriate measure for selecting the number of trees in 
RF models, the interactions to use in GAMs, or the number of hidden layers in NNs. 

However, the deviance does not illustrate how well the  Y True p P  probabili-

ties obtained from the ML model can be used to predict  Y True  events. 

Furthermore, the deviance is unable to compare different kinds of models, as 
the saturated model is always interpreted in the given GAM, RF, or NN framework. 
Therefore, the deviance enables us to only compare different parameterisations of the 
same model family, as the deviance from the saturated model in the case of GAMs or 
RFs can be on a completely different likelihood ratio scale, even on the same dataset. 

We propose evaluation measures that are commonly used to evaluate classifier 
models. We aim to measure on a uniform, model family-independent scale how well 

the  Y TrueP  probabilities can be used to predict actual  Y True  events 

(Mohri–Rostamizadeh–Talwalkar [2012]). 
First, we split our MTPL policy data to separate a 20% test set. The remaining 

80% will be the ‘training data’. This set of data can be split further into training and 
validation sets if the ML algorithm demands parameter value selection (e.g. for 
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choosing the number of trees in a RF). The training data can also be split multiple 
times during the 10-fold cross-validation steps in the algorithms (e.g. for selecting 
spline function parameters in GAMs). 

The point is that the 20% test set that has been completely disregarded by the 
ML models up until now will only come into play during the evaluation phase.  

We create the  Y True p P  prediction vectors from every trained model.  

As we assumed earlier, the insurance risk is linearly proportional to yearly units in 
the case of periods shorter than one year, and the probabilities obtained from the 
models were adjusted with the inverse of the average yearly unit. This technique is in 
line with that of De Jong and Heller [2008]. In the following sections, we will show 
and use this type of probability. Adjustments according to more than one claim case 
and the IBNR cases ([1 + y] and [1 + z]) multiplicators) were not used here; these can 
be done at the later tariff calculation. 

We define cut-off values in such a way that  Y True P  

 1 cut-off 1claim claim    P  is set for the policy. After predicting 0 and 1 

values for each policy based on the probabilities and the cut-off value, we can con-
struct the so-called confusion matrix by grouping the actual and predicted classifica-
tions in a 2 × 2 matrix. (See Table 1.) Naturally, the cut-off value influences the val-
ues in the confusion matrix. 

 Table 1 

Structure of a confusion matrix 

Actual value 
Model value 

0 1 

0 a b 

1 c d 

Note. a, b, c, and d denote the number of observations in each cell. 

 
At many cut-off points, we calculate: 

– the proportion of correct classifications (true positive rate, 

 TPR d c d  ) and 

– the proportion of misclassifications (false positive rate, 

  FPR b a b  ). 
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These values are used to create a curve, called the receiver operating character-
istic (ROC) curve, in a coordinate system. The principles of the ROC curves and 
confusion matrices are described based on (Bradley [1997]). The curve’s x axis rep-
resents the FPR values and the y axis represents the TPR values at the cut-offs used. 
The cut-off values used are the percentiles of the empirical distribution of the 

 1claim P  vector from each evaluated model. 

It is easy to see that the perfect classifier will be at the (0, 1) coordinate as this 
model would have 0 FPR and 1 TPR. Thus, we grade every model based on the area 
under its ROC curve. This measure is called the area under the curve (AUC). A use-

ful model would have an AUC > 0.5 as for a  1claim P  vector containing 0.5 for 

every policy (the completely random guess model) would obtain an AUC of 0.5. 
Naturally, a higher AUC indicates a better classification performance. 

Two other important aspects from an insurance company’s point of view are 
mentioned that will lead us to define new measures to the claim-modelling problem: 

– Misclassification in the case of contracts with claims and con-
tracts without claims is asymmetric from the financial aspect.  
The company has profit on contracts without claims and usually has 
loss on contracts with claims, but the latter loss is usually much higher 
than the former profit. 

– The company is mainly interested in maximising profits.  
However, the points of the ROC curve are only classification rates, 
which cannot support the profit-maximising decision in the asymmet-
ric financial situation. 

 
Based on these two aspects, we introduce a utility function,  U α  as a new as-

sessment tool for this problem. Let us assume that the company uses the predicted 
probabilities and the cut-off value as an underwriting tool: if the predicted probabil-
ity is not higher than the cut-off value, then the contract is accepted, otherwise, it is 
rejected. Thus, the company accepts a c  number of contracts. (See Table 1.)  

Let us suppose that the company has one unit of ‘profit’ on each contract without 
claim and L unit of ‘loss’ (L < 0) on each contract with claim. The company’s goal is 

to maximise  U α a L c    utility function with the optimal α  cut-off value. 

The idea of using the general assessment function of a confusion matrix was also 
used by Figini and Uberti [2010]. 

The motivation to define  U α  is to model a utility that is similar to the com-

pany’s expected profit. As this study only deals with claim-frequency modelling  
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and no other parts of the tariff calculation (e.g. claim amount, expense loadings, 
gross premiums), uniform premiums per contract, uniform claim amounts per claim, 
and uniform expenses are assumed. In this way, uniform profits and losses can be 
assumed among the two types of contracts. Of course, the formula can be generalised 
with other model elements, but at this stage of modelling, it provides a simple opti-
misation tool that can handle the asymmetric financial situation. 

In addition to the optimal  U α  and ,α  we also show the ratio of the retained  

(kept) portfolio     . a c a b c d     (See Table 1.) The defined measures can 

be used to realistically assess a supervised learning model’s ability to detect policies 
that cause claim events for insurance companies, considering the financial asym-
metry of an insurance company. 

4. Claim-modelling results 

In this section, we show the results of the described methods on our sample  
data and our conclusions regarding the examined models. 

4.1. Exploratory data analysis 

First, we examined the distribution of the policies with claims (claimBool = 1) 
and no claims (claimBool = 0) with respect to the values of different feature varia-
bles. The relative frequency of the policies with claims is below 5% in our data,  
so we need to predict an extremely rare event. 

By examining the distribution of the feature values inside the claim and no-
claim groups separately, we can quickly discover some important relationships be-
tween our features and the claim profile of the policies. 

For example, the proportion of policyholders under the age of 30 and above the 
age of 70 is noticeably higher in terms of policies with claims than in the no-claim 
category. (See Figure 2.) Similarly, it is more likely that a driver from the capital city 
(Budapest) has a claim compared to a rural driver. (See Figure 3.) 

After these preliminary conclusions from simple visualisation, we could  
run our more complex models. First, we separated a randomly chosen 80% of our 
data for model training, and the remaining 20% was used to calculate all the perfor-
mance measures. 
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Figure 2. Age distribution of clients holding policies without and with claim 

 

Figure 3. Geographical distribution of policies without and with claim 

 
Note. claimBool: binary target variable denoting whether the policy caused claim in a policy year (1)  

or not (0).  
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4.2. Results of the GAM and GLM 

First, we ran a GAM with all 20 features included to test for the necessity of 
non-linear effects. We considered interactions up until three-way combinations to 
avoid cases that are not present in the observed sample. 

None of our continuous features had non-linear effects on the logit transform 
of the claimBool target variable. A fitted thin plate spline function for the Vehicle-
CubicCapacity feature is shown in Figure 4. This feature has a linear function as its 
spline representation (with its 95% confidence bars marked by grey area). This can 
also be seen in the second parameter of the spline function s that denotes the degree 
of the basis in the spline. 

Figure 4. Spline function describing the effect of vehicle cubic capacity  
on the logit transform of claim probability 

 
 
None of the fitted spline functions significantly differs from a linear form. 

Therefore, further investigations were conducted in a GLM framework to improve 
the run time. 

Using the iterative SIS feature selection algorithm, we obtained the following 
model: 

 
AgeGroup + BM + RegionCode + KWclass + VehicleFuel + Child +  

+ VehicleCubicCapacity + MultiplieCarsinFamily + VehicleFuel * RegionCode +  
+ VehicleFuel * VehicleCubicCapacity + VehicleCubicCapacity * RegionCode. 

 
Feature importance is defined via the partial Wald test: the smaller the p-value 

for the Wald test of the coefficient, the more significant the effect of that feature.  
The effects are ordered according to importance (in decreasing order by their  
1 – p-value measures), as shown in Figure 5. For categorical features or interactions 
containing categorical features represented by dummy variables, the means of their 
1 – p-value measures are considered. 
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The parameters from the model indicate that the most important predictor for 
claim events is the interaction between the fuel type and the cubic capacity of the 
vehicle (VehicleFuel * VehicleCubicCapacity). The features are also individually 
important, along with the feature of having a child discount. 

Figure 5. Feature importance in the GLM 
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RegionCode * VehicleCubicCapacity

AgeGroup

BM

KWclass
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VehicleFuel
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VehicleFuel * VehicleCubicCapacity

Mean of 1 – p-value  
 

The model contains coefficients that are not significant according to the Wald 
test at even 10%, but removing the features associated with these coefficients did not 
improve the 10-fold cross-validated deviance of the model, so we kept the solution of 
the iterative SIS algorithm. The reason for this is the presence of two- and three-way 
interactions. For example, if we have some non-significant region codes and we re-
move the dummy of these codes (we merge them into the reference category),  
they can affect the coefficients of the interactions as well. 

4.3. Results of the RF model 

First, we experimented with the application of the CART algorithm with dif-
ferent cp-s. The default value in the rpart package is 0.01,cp   which results in a 

null model; for every policy, the tree predicts the relative frequency of claims in the 
training set. This is because of the low frequency of claim events in the portfolio.  
We gradually decreased the value of cp until an actual decision tree was built by 
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utilising some features. The maxdepth parameter was fixed at its maximal value of 
30. However, the resulting trees become too wide rather quickly with AUC on the 
test set, which is worse than the GLM proposed in Sub-section 3.2. The detailed 
results are presented in Table 2. With 63 leaves, the decision tree loses its advantage 
of easy interpretability, and it still underperforms the GLM with interactions on the 
test set in AUC.  

 Table 2 

AUC on the test set for CART decision trees with different cp-s 

Model Number of leaves AUC 

GLM – 0.6446 

CART, cp = 0.010000 1 0.5000 

CART, cp = 0.000305 1 0.5000 

CART, cp = 0.000304 13 0.5515 

CART, cp = 0.000301 13 0.5515 

CART, cp = 0.000300 63 0.6341 

 
After unsuccessful trials with the CART algorithm, we applied the RF algo-

rithm with T = 500 to address the challenge posed by the low claim frequency.  
Neither the increase nor the decrease in the number of trees improved the 10-fold 
cross-validated deviance. 

The RFE algorithm proposed the following RF model: 

VehicleCubicCapacity + VehicleManufactureYear + RegionCode + BM + 
+ AgeGroup + KWclass + VehicleSalesChannel + ExperiencedDriver + 

+ VehicleFuel + Child. 

In a RF model, the importance of features can be estimated by calculating the 
mean relative decrease they cause in our loss function (deviance in our case) during 
model training.  

It is important to note that in the RF model, the importance of features is slight-
ly rearranged with respect to the GLM. The most important feature of this model is 
the RegionCode, which is also included in the GLM, but not in the group with signif-
icant features at 5%. The Child and VehicleFuel features, which can be considered 
some of the most important stand-alone features in the GLM, rank lower  
in the RF model. The MultipleCarsinFamily Boolean feature, which was significant 
at 10% in the GLM, was excluded by the RFE algorithm. The RF algorithm seems to 
handle the continuous features (VehicleCubicCapacity and VehicleManufactureYear) 
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better, as they rank higher on its list. As we could not find significant non-linear 
main effects for these features with GAM, the RF algorithm seems to be more potent 
in detecting complex interactions between these features, as in the case of GAM. 

Figure 6. Feature importance in the RF model 
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4.4. Results of the NN model 

We constructed an MLP NN with three hidden layers with 64 latent variables 
in each layer, following the suggestions of Lecun, Bengio, and Hinton [2015].  
The RFE algorithm suggested leaving the full set of features in the model. It is not 
surprising as a NN is the most efficient when it can form many connections in its hid-
den layers to detect complex interactions (Hastie–Tibshirani–Friedman [2009]). This 
means that the model prefers a large number of input features and a complex hidden 
layer structure. As a result, the so-called ‘way deep learning’ structures are preferred in 
the cases of complex pattern recognition tasks (Lecun–Bengio–Hinton [2015]). 

The importance of features can be estimated in a manner similar to that of the 
RF model. We can obtain the mean relative decrease they cause in our loss function 
(deviance). The results are in Figure 7. Only the top 10 features are shown. 
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Figure 7. Feature importance in the NN model 
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In our NN, the BM class is the most important feature. However, the  

RegionCode (the most important feature in the RF model) was also high on the list. 
Furthermore, the NN prefers continuous features, such as RF. This suggests that the 
latent variables of the NN can capture more complex interactions than those  
in the GLM. These characteristics make the NN model more similar to RF behaviour. 
However, owing to the large number of input features, the NN is more likely to over-
fit the original dataset. 

4.5. Evaluation and extension of supervised learning models 

After analysing the behaviour and feature importance in the applied models, 
we assessed their predictive performance in a separate test set. The AUC measures 
for each model are presented in Table 3. 

 Table 3 

AUC measures for the three examined models 

Model AUC 

GLM 0.6446 

RF 0.6657 

NN 0.6347 
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From the ROC curve, we can easily observe that all three models are better 
than the random guess model. However, the GLM and NN are similar in perfor-
mance, whereas, the RF outperforms them. This conclusion is supported by  
the AUC measures of the three models. In contrast, from the ROC curves, we can see 
that the advantage of the RF model disappears at lower cut-off values (the top right 
corner of the graph). The NN has an advantage in these regions, so it seems that this 
model is slightly better at estimating higher claim probabilities. 

Figure 8. ROC curves for the three examined models 

 
 
The respective AUC values are not too high for the first sight, as they do not 

reach the favourable 0.7 value. However, owing to the prediction of a very rare event 
(the relative frequency of the policies with claims is lower than 5%) and the fact that 
which drivers cause claim is a random incidence, it is not surprising that AUC is at 
this scale. 

Overall, we can determine that the performance of the RF at certain cut-off 
values can be improved by considering the results from the other two applied  
models. Based on this conclusion, we found that it would be useful to create a voting 

model that averages the predicted  1claim P  probabilities from the three models 

with some weights. In the literature, these kinds of models are usually described as 
stacking models as they stack the results of different ML models (Smyth–Wolpert 
[1999]). Recently, these models have been used to identify Higgs bosons with great 
success (Alves [2017]). 
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We set the weight combinations on the training set via a grid search, where 
each weight could take an integer value in the range of [1, 10]. The objective func-
tion was a 10-fold cross-validated deviance of the voting model. The final weight 
combinations were 1 GLM – 2 RF – 1 NN. This is not surprising, since the RF model 
produced the best AUC measure, it makes sense to give this model a higher weight in 

a voting of  1claim P  predictions. The AUC measures extended with the voting 

model are introduced in Table 4. 

 Table 4 

AUC measures for the three primary models and the voting model 

Model AUC 

GLM 0.6446 

RF 0.6657 

NN 0.6347 

Voting 0.6791 

Figure 9. ROC curve for the three primary models and the voting model 

 
 
The voting model can correct the low performance of the RF at the lower cut-

off points on the ROC curve, so this new model produces the best AUC measure. 
However, because of the uniformly poor performance of these models when 

predicting claim events, the models could not be used as underwriting machines. 
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We also assessed the models using the  U α utility function. The results for 

L = –10, –20, –30, and –50 are shown in Tables 5, 6, 7, and 8, respectively. The rank 
is based on the maximum utility value. According to the volume of the average pre-
mium per contract and the average claim amounts from public Hungarian data,  
–20 ≤ L ≤ –10 can be reasonable for the Hungarian MTPL business, but for assessing 
the models, we show some more extreme values of the L loss parameter. 

Table 5 

Analysis of the utility function with L = –10 

Denomination GLM RF NN Voting 

Maximum utility 27,978 28,894 27,936 28,675 

Kept portfolio (%)        95.7        95.5        99.9        93.8 

Optimal cut-off value (%)          8.4        15.0        14.0          8.7 

Rank          3.          1.          4.          2. 

Table 6 

Analysis of the utility function with L = –20 

Denomination GLM RF NN Voting 

Maximum utility 16,927 18,495 16,257 19,043 

Kept portfolio (%)        81.6        88.0        82.0        85.0 

Optimal cut-off value (%)          5.0          8.6          4.7          5.9 

Rank          3.          2.          4.          1. 

Table 7 

Analysis of the utility function with L = –30 

Denomination GLM RF NN Voting 

Maximum utility 9,046 10,422 8,297 11,009 

Kept portfolio (%)      56.2        72.4      64.8        71.8 

Optimal cut-off value (%)        3.4          4.5        3.3          4.2 

Rank        3.          2.        4.          1. 
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Table 8 

Analysis of the utility function with L = –50 

Denomination GLM RF NN Voting 

Maximum utility 1,174 1,440 1,540 3,023 

Kept portfolio (%)      34.1      26.1      25.3      28.4 

Optimal cut-off value (%)        2.6        0.7        2.3        2.1 

Rank        4.        3.        2.        1. 

 
Tables 5–8 show that the voting model produces the best results in each seg-

ment of the L loss parameter, except for the L = –10 case. It is important to note that 
the NN performs poorly in the case of moderate L values and has good results in the 
case of extreme L values, whereas the RF method behaves in the opposite manner. 
This characteristic is consistent with the tendencies of the ROC curves of the two 
models. The voting model has good overall results, confirming again that this is our 
most beneficial model. 

Figure 10 shows the chart of the kept portfolio and the utility value for the vot-
ing model with L = –20 for different cut-off values. Eighty-five percent of the portfo-
lio is kept, and at the optimal α value, the TPR is 39.8%, while the FPR is 14.2%. 
Taking into consideration the fact that claim causing is a rare and random incidence, 
we can state that the model can identify a significant proportion of clients with 
claims, in addition to incorrectly classifying too many no-claim policies. 

Figure 10. Kept portfolio and utility in the case of different cut-off values (voting model, L = –20) 
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In general, we can declare that in the case of non-extreme values of the loss pa-
rameter, it is worth accepting almost all the policies, even with the assumed uniform 
premium. This implies that in such cases, the best application of the model will be  
to accept most of the policies but differentiate the premium according to the predict-
ed claim probability for each policy. The possibilities of this type of tariff concept 
will be explained in the next section. 

5. Pricing application – building an explainer model  
for the voting predictions 

For later pricing applications, there are two main possible approaches. The first 
is to use the probabilities obtained from the voting model without any modification. 
It is possible to calculate a unique probability with the model for each combination 
of the feature variables, and the collection of these probabilities can provide the first 
pillar of the tariff. It can be supplemented later with claim amount modelling and 
other tariff elements. The advantage of this approach is that it maintains the total 
variance of the model. Disadvantages include the complex structure, lack of visuali-
sation, and the fact that it is extremely difficult to publish or describe. There are 
countries in which national laws require MTPL tariff publishing. In the latter case, 
formalising the predicted probabilities of the model with the tariffing variables can 
be an important aspect, despite losing some variance. In the present section, we ex-
amine this second approach. 

We can attempt to identify homogeneous groups in our policies that have similar 

 1claim P  predictions in order to handle these groups similarly during later pricing. 

For this, we must understand how each feature affects these predictions, and based on 
this understanding, we can try to create groups from our policies along the features that 

are the most important in predicting the claims. We use the  1claim P  probabilities 

from the voting model to create homogenous policy clusters. 
For a classification with k clusters, for each group 1, ,j k   we determine 

the formula  


1

jn

j ij j
i

Y claimBool n


 
   



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where jn  denotes the number of observations in cluster j and claimBoolij is the bina-

ry target variable for the ith policy in cluster j. After adjusting jY  with the inverse of 

the average yearly unit, we obtain ,jY  the actual claim frequency of the group.  

Furthermore, we calculated the average predicted  1claim P  probability for each 

cluster. jX  denotes the average for cluster j. 

The performance of each classification model was assessed using two measures. 
First, for each model, we calculated Spearman’s rank correlation between the vectors 
of jY  and .jX  In this way, we can see how well each model captures the order of the 

clusters according to their actual claim frequency. This is important information, as we 

need to give higher premiums for groups with higher  1claim P  probabilities. 

Second, we calculate a variant of the sum of squared errors within our clusters 
(SSW). In this SSW measure, we aim to capture the variability of the binary target 
variable around the jX  average predicted claim probabilities. During later pricing, 

the tariff for each cluster can be based on the average prediction of a ML model. 
Therefore, it is important to see how the actual claim experience differs from the 
average prediction within a cluster. The SSW is defined by the following formula: 

 2

1 1

.
jnk

ij j
j i

SSW claimBool X
 

     

The smaller SSW values indicate that the predicted claim probabilities for the 
clusters better fit the actual claim experience within the clusters. 

To create homogenous clusters with respect to the predicted  1claim P  

probabilities from the voting model, we apply the CART decision tree algorithm to 

the predicted  1claim P  probabilities from the voting model with a squared error 

loss function. These features can be the original features that we used for the three 
elementary models. In this way, we can use the leaves from the decision tree to cre-

ate homogenous policy clusters with respect to the predicted  1claim P  probabil-

ity. We examined decision trees with maximum depths ranging from 1 to 27.  
The exit value is selected based on the rank correlation measure, as the tendency 
shows that more clusters usually result in a lower rank correlation. Figure 11 shows 
the details from the 1 to 15 depth case. 

We also examined the SSW measure as a function of cluster number.  
(See Figure 12.) The horizontal line shows the sum of the squared deviations for the 
probabilities of the voting model without clustering. We can see that after 12 clus-
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ters, which is equivalent to a tree depth of four, the decrease in the within-group 
variability is not considerable. 

Based on the ‘elbow’ present at 12 clusters in Figure 12, we can consider the de-
cision tree with depth four as optimal. This decision tree has acceptable within-cluster 
claim experience variability, and the predicted average claim probability of the clusters 
reflects the order of the actual relative claim frequencies remarkably well, moreover, 
the simplicity is also beneficial. Twenty-one clusters with a tree depth of nine could 
also be an optimal choice; however, it implies a more complex tree structure. 

Figure 11. Rank correlation between actual and predicted claim probabilities  
on clusters made by CART on voting model results 
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Figure 12. SSW of predicted claim probabilities  

on clusters made by CART on the voting model results 
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Note. The horizontal line shows the sum of the squared deviations for the probabilities of the voting 
model without clustering. 
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We will use the k = 12 clusters in the actual case and show further results in de-
tail with this setting. Some results for k = 21 case are also shown. It is possible to 
increase further the number of clusters to develop the SSW measure and maintain a 
high rank correlation, but this makes the tree much more complex. 

The resulting tree for k = 12 is shown in Figure 13. In each node, we can ob-

serve the average  1claim P  value in percent (number of nodes). The splitting 

condition is always given as a label to each node that is not a leaf. The tree is split at 
each node in such a way that policies that satisfy the current node’s splitting condi-
tions will be arranged to the left, and policies that do not satisfy the condition will be 
arranged to the right. With the average predicted claim probabilities inside the 
formed policy clusters (leaves), we can reproduce the variance of the predicted prob-
abilities from the voting model with 64% accuracy. 

Figure 13. Simplified decision tree with 12 clusters on the voting model results 

 

Note. In each node, the average  1claim P  value can be seen in percent. Policies that satisfy the ac-
tual node’s splitting conditions are arranged to the left (Yes label), and the others are arranged to the right  
(No label). A darkening of the blue colour indicates an increase in the average predicted claim probability 
values. 

 
This is not an exceptionally good ratio for preserved variance with a regression 

tree, but the resulting model is simple compared to the quite complicated calculation 
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method for the claim probabilities from the voting model (the weighted average of 
claim probabilities from three, already quite complex ML models), so we could 
achieve our goal of simplifying. Furthermore, the decision tree can be used to identi-
fy homogenous policy groups with respect to claim probabilities. 

We can observe that the decision tree built from the voting model reflects some 
characteristics of each original model. The most important split is based on the  
RegionCode, and this feature is quite important for RF and NN models. In Figure 13, 
we can see the VehicleFuel feature on the second and third levels of the tree, which 
was preserved in each model by every feature selection algorithm. At deeper levels, the 
tree is split in order to reflect the interaction of vehicle cubic capacity (VehicleCubic-
Capacity) and fuel type (VehicleFuel), which was the most important effect in the GLM. 

In the last step, we tested the simplified models obtained with some of the pre-
viously used evaluation measures. Evidently, due to variance loss, these models 
probably have worse predictive performance than the original voting model on a 
contract level. However, it is important to quantify the difference between voting and 
other models. Table 9 shows the respective AUC values and Table 10 displays the 
earlier defined indicators regarding the  U α  utility function for each model. 

 Table 9 

AUC measures extended with CART simplified voting models 

Model AUC (rank) 

GLM 0.6446 (4.) 

RF 0.6657 (2.) 

NN 0.6347 (6.) 

Voting 0.6791 (1.) 

Voting (simplified with CART, 12 clusters) 0.6361 (5.) 

Voting (simplified with CART, 21 clusters) 0.6523 (3.) 

Table 10 

Analysis of the utility function with L = –20, extended with CART simplified voting models 

Denomination GLM RF NN Voting 
Voting (simplified 

with CART,  
12 clusters) 

Voting (simpli-
fied with CART, 

21 clusters) 

Maximum utility 16,927 18,495 16,257 19,043 17,280 17,877 

Kept portfolio (%)        81.6        88.0        82.0        85.0        82.1        80.0 

Optimal cut-off value (%)          5.0          8.6          4.7          5.9          4.4          4.2 

Rank          5.          2.          6.          1.          4.          3. 
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The results show that the models obtained from the voting model’s CART 
classification have worse efficiency than the voting and RF techniques, but they 
perform similarly or better than the GLM and NN models. In particular,  
the 21-cluster case has quite good figures. These results are particularly beneficial for 
our simplified voting model, as it has only 12 or 21 different groups with simple 
classification rules, compared to the elementary models with quite difficult struc-
tures. Although our GLM model includes several feature variables and interactions, 
other models are much more complex and difficult or impossible to interpret. 

Overall, the policies most at risk can be described by the interactions of several 
features. The ML models that culminate in the voting model can identify these com-
plicated interactions between features. Furthermore, by building an explainer deci-

sion tree on the predicted  1claim P  vector, we can identify clusters of policies 

with homogenous risk profiles with an acceptable loss of variance and predictive 
performance; moreover, we can easily get interpretable segmentation rules based on 
known features of the policies. 

Regarding the question about the possible overperformance of the GLM ap-
proach, it can be stated that the best model was not the GLM or GAM or any of the 
ML methods, but a mixture of these. From the actual experiment, we can conclude 
that the best solution is to build several separate models using ML techniques and 
stack them to integrate their advantages. 

6. Conclusion 

This study presented the application of the GLM, GAM, RF, and NN tech-
niques for modelling the yearly MTPL claim event probabilities. Several evaluation 
measures were described or defined: the AUC, the loss function, the rank correlation, 
and the SSW between the actual claim experience and predicted probabilities. All the 
separate models showed good figures; however, the best model was a mixture of 
them, the so-called voting method, which is a weighted average of the predictions 
from the elementary models. In the last step, the pricing application of the model is 
described. In addition to the application of the full voting model, a simplified cluster-
ing method was used based on the CART algorithm, which can be a tool for trans-
parent tariff making. This approach can help to visualise and publish our results in 
exchange for losing some of the complete model’s variance, but with still tolerable 
performance, and it can also detect some of the interactions made by the model. 
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